Learning

OP GCD = (LINT a, b) LINT

: (b=0© | ABS a | b GCD (a MOD b));
PROC crout = (REF [,] FRAC a, REF [] INT p) VOID:
LU-decomposition cf. Crout, of a matrix of rationals.
BEGIN INT n UPB a @
T n
- 08 Genie
1 FRA a1k al, k], alkq)
FOR i FROM k TO n
DO aik[i] -:= a[i, 1 : k1] INNER aik[1l : kl1];
IF piv = LINT (©) AND aik[i] /= LINT (0)
THEN piv := aik[il;

Algol 68 Genie 3.5

Edited by Marcel van der Veer

Learning Algol 68 Genie copyright © Marcel van der Veer 2008-2024.
Algol 68 Genie, an Algol 68 implementation, copyright © Marcel van der Veer 2001-2024.

Learning Algol 68 Genie is a compilation of separate and independent documents or works, consist-
ing of the following parts:

I. Informal introduction to Algol 68,
II. Programming with Algol 68 Genie,
III. Example programs,
IV. Algol 68 Revised Report,
V. Appendices

Part I, II, IIT and V are distributed under the conditions of the GNU Free Documentation Li-
cense: Permission is granted to copy, distribute and / or modify the text under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Soft-
ware Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled GNU Free Documentation License. See
https://www.gnu.org.

Part IV is a translation of the Algol 68 Revised Report into HIEX and is therefore subject to
IFIP’s condition contained in that Report: Reproduction of the Report, for any purpose, but only
of the whole text, is explicitly permitted without formality. Chapter 20 Specification of partial
parametrization proposal is not a part of the Algol 68 Revised Report, and is distributed with kind
permission of the author of this proposal, C.H. Lindsey.

This publication contains material from various free or open source publications. For a list of those
publications and their licenses see section A.1 in the bibliography.

IBM is a trademark of IBM corporation.

Linux is a trademark registered to Linus Torvalds.

Mac OS X is a trademark of Apple Computer.

Pentium is a trademark of Intel Corporation.

TEX is a trademark of the American Mathematical Society.
Unix is a registered trademark of The Open Group.
Wikipedia is a trademark of the Wikimedia Foundation, Inc.

Edition from March 2025, typeset in ETEX.

https://www.gnu.org

Table of contents

Preface

I Informal introduction to Algol 68

1 Preliminaries

1.1 A brief history of programming languages
1.2 A brief history of Algol 68
1.3 Notationof syntax
2 Basic concepts
2.1 Displays e e e e e
2.2 Modesand values e
2.3 Whole numbers
2.4 Identifiers and identity declarations
2.5 Realnumbers e
2.6 Formulas e
2.7 Mathematical functions,
2.8 Booleanvalues e
2.9 Charactersandtext
2.10 Comparison operators i e e
2.11 Variables and assignation,
212 ThevalueNIL e
2.13 Assignment combined with an operator

3 Stowed and united modes

3.1 Introduction e
3.2 Rowsand row displays e
3.3 Subscripts, slicesand trims o
3.4 Operators for rows e e e
3.5 Flexible names and the mode STRING
3.6 Vectors, matrices and tensors e
3.7 Torrix extensions e e e
3.8 Anoteonbrackets
3.9 Structuredmodes e
3.10 Fieldselections e
3.11 Mode declarations e

xi

11
11
12
13
15
17
20
24
25
25
27
28
32
33

35
35
35
39
43
44
47
48
49
49
55
56

1il

TABLE OF CONTENTS

v

3.12
3.13
3.14

Complexnumbers e
Archaic modes BITS and BYTES
United modes e

Program structure

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Introduction
Theclosedclause e
The conditional clause
Pseudooperators e
Identity relations
Thecaseclause i it e e
The conformity clause
Balancing e
Theloopclause e e
Order ofevaluation e
Comments and pragmats e
Parallel processing e e
JUMPS . . e e e
Assertions e

Procedures and operators

5.1 Introduction
5.2 Routinemodes
5.3 Calls and parameters
5.4 Routinesandscope
5.5 Declaring new operators
5.6 Identification of operators
5.7 Recursion e
5.8 Recursion and data structures
59 Recursive mode declarations
5.10 Partial parameterisationand currying
Modes, contexts and coercions

6.1 Introduction e
6.2 Well-formedmodes
6.3 Equivalence of modes
6.4 Contexts e e e
6.5 COBrCIONS v o e e e e
Transput

7.1 Transput e
7.2 Channelsandfiles
7.3 United modes asarguments,
7.4 Transput andscope e

65
65
65
67
70
71
72
74
76
76
80
81
82
84
86

87
87
90
91
95
96
98
99
103
107
107

109
109
109
112
113
115

TABLE OF CONTENTS

7.5 Readingfiles
7.6 Writingtofiles
7.7 String terminators
7.8 Events
7.9 Formatting routines
7.10 Straightening
7.11 Default-format transput
7.12 Formatted transput.
7.13 Binaryfiles
7.14 Usingastringasafile
7.15 Other transput procedures
7.16 Appendix. Formatting routines

8 Context-free grammar

8.1 Introduction
8.2 Reserved symbols
8.3 Digit symbols
8.4 Letter symbols
8.5 Bold letter symbols
8.6 Tags. e
8.7 Particular program
8.8 Clauses i iie e
8.9 Units
8.10 Declarations
811 Declarers.
812 Pragments
8.13 Refinements
8.14 Private productionrules

II Programming with Algol 68 Genie

9 Installing and using Algol 68 Genie

9.1 Algol68 Genie
9.2 Algol 68 Genie transput
9.3 Installing Algol 68 Genie on Linux
94 SYNOPSIS « v v v e e e e e e e e e e e e
9.5 Diagnostics
9.6 Options i i
9.7 The preprocessor
9.8 The monitor
9.9 Algol 68 Genieinternals
9.10 Limitationsandbugs.

TABLE OF CONTENTS

10 Standard prelude and library prelude 209
10.1 Thestandardenviron 209
10.2 Thestandard prelude, 209
10.3 Standardmodes e 210
10.4 Environmentenquiries.t i it i e e e e 211
10.5 Standard operators 215
10.6 Standard procedures e e 228
10.7 Statistical procedures from Rmathlib 232
10.8 Functions from the GNU Scientific Library 236
10.9 Random-number generator 242
10.10 Linear algebra. e 242
10.11 Fourier transform e 249
10.12 Laplace transform e 250
10.13 Constants e e e 251
10.14 Transput e e e e 259
10.15 Thelibrary prelude e 269
10.16 ALGOL68C-style transput procedures 269
10.17 Drawingandplotting 272
10.18 Linux exXtensions v v v i i i e e e e e e e 279
10.19 Miscellaneous definitions 279
10.20 Regular expressions in string manipulation. 288
10.21 Curses support e e e e e e e e e e 291
10.22 PostgreSQL support e 291
10.23 PCM Sounds i i e e e e e e e 302

IIT Example Algol 68 programs 307

11 Example programs 309
11.1 Hammingnumbers e 309
11.2 Romannumbers. e e 310
11.3 Hilbert matrix using fractions 311
11.4 Parallel sieve of Erathostenes 314
11.5 Mastermind code breaker 315
11.6 Decisiontree. e e e e e e 316
11.7 Peano curve i i i e e e e e e e e e e e e e 318
11.8 Fibonaccigrammar it e e e e e e e 319

IV Revised report on Algol 68 321

12 About this translation 325

13 Acknowledgments 327

Vi

TABLE OF CONTENTS

14 Introduction 331
14.1 Aims and principlesofdesign, 331
14.2 Comparison with Algol 60 333
14.3 Changes in the method of description 338

15 Language and metalanguage 343
15.1 The method of description 343
15.2 Introduction 343
15.3 Pragmatics. e e 344
15.4 Translationsandvariants 358
15.5 General metaproductionrules, 359
15.6 General hyper-rules 361

16 The computer and the program 365
16.1 Terminology e e e e 365
16.2 Theprogram o i e e e e e e 381

17 Clauses 387
17.1 Closedclauses e e e e e 388
17.2 Serialclauses e e 389
17.3 Collateral and parallelclauses 392
174 Choiceclauses e e e e e e 396
175 Loopclauses e e 401

18 Declarations, declarers and indicators 405
18.1 Declarations e e e 405
18.2 Mode declarations e e 406
18.3 Priority declarations 407
18.4 Identifier declarations 408
18.5 Operation declarations 411
18.6 Declarers e e e e 412
18.7 Relationships betweenmodes 417
18.8 Indicators and field selectors 418

19 Units 421
19.1 Syntax e e e e e e e 421
19.2 Units associated withnames 422
19.3 Units associated with stowed values 428
19.4 Units associated with routines 433
19.5 Units associated with valuesofanymode 439

20 Specification of partial parametrization proposal 441

21 Coercion 449
211 CO0BICEES . . v v v o i e e e e e e e e e e e e e e e e e e 449

Vil

TABLE OF CONTENTS

21.2 Dereferencing 452
21.3 Deproceduring i e e e e e e 452
214 Uniting e e e e e e 453
2156 Widening e e e e e 454
21.6 Rowing e e e e 455
21.7 Voiding e e 457
22 Modes and nests 459
22.1 Independence of properties, 459
22.2 Identificationinnests 462
22.3 Equivalenceofmodes 464
22.4 Well-formedness 469
23 Denotations 473
23.1 Plaindenotations 473
23.2 Bitsdenotations 478
23.3 Stringdenotations e 480
24 Tokens and symbols 483
241 Tokens e e e e e 483
24.2 Comments and pragmats 484
24.3 Representations e e e e 486
24.4 The reference language 487
25 Standard environment 499
25.1 Programtexts e e e e e 499
25.2 Thestandardprelude 504
25.3 Transput declarations 516
25.4 The system preludeand tasklist 590
25.5 The particular preludes and postludes 591
26 Examples 593
26.1 Complexsquareroot i e 593
26.2 Innerproduct 1 e 593
26.3 Innerproduct2 594
26.4 Largestelement 594
26.5 Eulersummation 595
26.6 Thenormofavector, 595
26.7 Determinantofamatrix, 595
26.8 Greatest common divisor e 596
26.9 Continued fraction e 597
26.10 Formula manipulation 597
26.11 Informationretrieval 599
26.12 Cooperating sequential processes i 601

viii

TABLE OF CONTENTS

26.13 Towersof Hanoi 602
27 Glossaries 603
27.1 Technicalterms e 603
27.2 Paranotions e e e e e e e e 611
27.3 Predicates e e e 617
27.4 Index to the standardprelude 618
27.5 Alphabetic listing of metaproductionrules 626
V Appendices 631
A Bibliography 633
A.1 Freeor open source publications 633
A2 Informaltextson Algol68 634
A3 Algol 68 Genie extensions i 634
A.4 Algol 68 Genie parsing algorithm 634
A5 Historyof Algol 68 e 635
A.6 Online informationon Algol 68 635
A.7 Alternatives for Algol 68 Genie, 636
A.8 Legacy Algol 68 implementations. 636
B Reporting bugs 639
B.1 Haveyoufoundabug? 639
B.2 How and where toreportbugs 640
C GNU General Public License 641
D GNU Free Documentation License 655
Keyword index 663

X

Preface

{Les inventions qui ne sont pas connues ont toujours plus de
censeurs que d'approbateurs.
Lettres dédicatoires & Monsieur le Chancelier. Blaise Pascal. }

Learning Algol 68 Genie is distributed with Algol 68 Genie, an open source Algol 68 hybrid
compiler-interpreter that can be used for executing Algol 68 programs or scripts. Algol 68
Genie is a new implementation written from scratch, it is not a port of a vintage implemen-
tation. This publication corresponds to Algol 68 Genie Version 3.5. Algol 68 Genie imple-
ments practically full Algol 68 as defined by the Revised Report, and extends that language
to make it particularly suited to scientific computations. This publication provides an in-
formal introduction to Algol 68, a manual for Algol 68 Genie, and a KTEX translation of the
Revised Report on Algol 68. It describes how to use Algol 68 Genie, as well as its features
and incompatibilities, and how to report bugs. Algol 68 Genie is open source software. The
license for Algol 68 Genie is the GNU GPL {C}.

The development of Algol was an international platform for discussing programming lan-
guages, compiler - and program construction, et cetera, and stimulated computer science
as an academic discipline in its own right. The preservation of Algol 68 is important from
both an educational as well as a scientific-historical point of view. Algol 68 has been around
for five decades, but some who rediscovered it in recent years, well aware of how the world
has moved on, had a feeling best described as plus ca change, plus c’est la méme chose.
One of the reasons for this is that Algol 68 introduced a number of concepts that are now
common, for example structured and united values, the possibility to define new types and
operators on them, et cetera.

A more or less comprehensive list of reasons for the continuing interest in Algol 68 { and
preservation of the language } would be:

e Importance to the history of science. As already indicated, the development of Algol
played a role in establishing computer science as an academic discipline in its own
right. Algol 68 was designed by a learned committee whose meeting accounts show
that there was, at times vigorous, debate before Algol 68 was presented. The influ-
ence of Algol is still tangible since it is to this day referred to in teaching material,
discussions and publications. Therefore, knowledge of Algol is required to understand
the current status of computer science.

X1

LEARNING ALGOL 68 GENIE

* Academic interest. People interested in the design and formal specification of pro-
gramming languages, such as students of computer science, should at an appropriate
moment study Algol 68 to understand the influence it had. Algol 68 lives on not only
in the minds of people formed by it, but also in other programming languages, even
though the orthogonality in the syntax, elegance and security has been mostly lost.

* Practical interest. Algol 68 has high expressive power that relieves you from having
to write all kind of irrelevant technicalities inherent to programming in many other
languages. For programmers, the world has of course moved on, but the reactions to
Algol 68 Genie suggest that many people who have seriously programmed in Algol 68
in the past, only moved to other programming languages because the Algol 68 imple-
mentations they were using were phased out. Algol 68 is a beautiful means to denote
algorithms and it still has its niche in programming small to medium sized applica-
tions for instance in the field of mathematics, or numerical applications in physics -
or chemistry problems.

Though Algol 68 did not spread widely in its day, it introduced innovations that are rel-
evant up to the present. Its expressive power, and its being oriented towards the needs
of programmers instead of towards the needs of compiler writers, may explain why, since
Algol 68 Genie became available under GPL, many appeared interested in an Algol 68
implementation, the majority of them being mathematicians or computer scientists. Some
still run proprietary implementations. Due to this continuing interest in Algol 68 it is ex-
pected that people will be interested in having access to documentation on Algol 68, but
nowadays most material is out of print. Even if one can get hold of a book on Algol 68, it
will probably not describe Algol 68 Genie since this implementation is most likely younger
than such book.

The formal defining document, the Algol 68 Revised Report, is also out of print but a IXTEX
version comes with this publication. The Revised Report ranks among the difficult publica-
tions of computer science and is therefore not suited as an informal introduction. In fact, it
has been said that at the time Algol 68 was presented some fifty years ago, the complexity
of the Revised Report made some people who allegedly did not use Algol 68 believe that the
language itself would be complex as well. That misconception has persisted up to this day
- Algol 68 would be "difficult", "complex" or even "bloated". After reading this publication
you will likely agree that Algol 68 is in fact a relatively lean language that is quite easy to
use.

This publication consists of original Algol 68 Genie documentation and material from var-
ious free or open source publications {A.1} that have been edited and blended to form a
consistent, new publication. This text is in the first place documentation for Algol 68 Ge-
nie; it is neither an introduction to programming nor a textbook for a course in computer
science. Parts I through III are a comprehensive introduction into programming with Al-
gol 68 Genie. Since Algol 68 is nowadays not commonly known and the Revised Report is
terse, it is desirable to have an informal introduction in this documentation. I am aware
that this creates some unevenness in the set-up and level of this publication, but if you

X11

PREFACE

succeed in programming in Algol 68 using this text, then the objective of this publication
is met.

Algol 68 Genie

The language described in Parts I through III of this publication is that implemented by
Algol 68 Genie available from:

https://jmvdveer.home.xs4all.nl/
Prebuilt binaries, for instance WIN32 binaries for Microsoft Windows, are available from:
https://sourceforge.net/projects/algol68/

but also from for instance Debian (stable), Ubuntu (universe) or OpenBSD (ports) reposi-
tories.

Please consider joining the Algol 68 user group at LinkedIn:
https://www.linkedin.com/groups/2333923

Marcel van der Veer is author and maintainer of Algol 68 Genie. Algol 68 Genie imple-
ments almost all of Algol 68, and extends that language. To run the programs described
in this publication you will need a computer with Linux or a compatible operating system.
Chapter 9 describes how you can install Algol 68 Genie on your system, and how you can
use it. Algol 68 Genie is open source software distributed under GNU GPL. This software
is distributed in the hope that it will be useful, but without any warranty. Consult the
GNU General Public License! for details. A copy of the license is in this publication.

Algol 68 Genie version 1 was an interpreter. It constructed a syntax tree for an Algol 68
program and the interpreter executed this syntax tree. As of version 2 and on Linux or com-
patible? operating systems, Algol 68 Genie can run in optimising mode, in which it employs
a unit compiler that emits C code for many units involving operations on primitive modes
INT, REAL,BOOL,CHAR and BITS and simple structures thereof such as COMPLEX. Execution
time of such units by interpretation is dominated by interpreter overhead, which makes
compilation of these units worthwhile. Generated C code is compiled and dynamically
linked before it is executed by Algol 68 Genie. Technically, the compiler synthesizes per
selected unit efficient routines compounding elemental interpreter routines needed to exe-
cute terminals in the syntax tree; compounding allows for instance common sub-expression
elimination. Generated C code is compatible with the virtual stack-heap machine imple-
mented by the interpreter proper, hence generated code has full access to a68g’s runtime
library and the interpreter’s debugger. Many runtime checks are disabled in optimising

ISee https://www.gnu.org/licenses/gpl.html.
2Compatible means here that the operating system must have a mechanism for dynamic linking
that works the same as on Linux.

xiil

https://jmvdveer.home.xs4all.nl/
https://sourceforge.net/projects/algol68/
https://www.linkedin.com/groups/2333923
https://www.gnu.org/licenses/gpl.html

LEARNING ALGOL 68 GENIE

mode for the sake of efficiency. Therefore, it is recommended to only specify optimisation
for programs that work correctly. Due to overhead, optimisation is not efficient for pro-
grams with short execution times, or run-once programs typical for programming course
exercises.

Conventions in this publication

Algol 68 source code is typeset in fixed-space font like this:
#

Takeuchi’s Tarai (or Tak) function. Moore proved its termination.
See mathworld.wolfram.com/TAKFunction.html
#

PROC tak = (INT i, 9, k) INT:
IF 1 <= j
THEN 3
ELSE tak (tak (1 - 1, 3, k), tak (3 - 1, k, i), tak (k - 1, i, 73J))
FI;

Sometimes code is substituted with . .. when it would not be relevant to the explanation
at hand, as in for instance:

PROC tak = (INT i, j, k) INT:

In this publication, a68g output is typeset as:

$ a68g hello.a68
Hello, world!

Throughout the text you will find references to other sections; for instance {1.1} refers to
section 1.1 and {A} refers to appendix A. This publication contains references that are listed
in the Bibliography. A format as [Mailloux 1978] means the entry referring to work of Mail-
loux, published in the year 1978. An indication AB39. 3.1 means ALGOL BULLETIN, volume
39, article 3.1. The ALGOL BULLETIN is still available on the internet. On various places in
Parts I through III you will see references to the Revised Report in Part IV formatted as for
example {2519.1.1.A} referring you to chapter 25, section 1.1(.1), mark A, where the chap-
ter number refers to Part IV, while its suffix refers to the chapter number in the original
Revised Report.

X1V

PREFACE

Organisation of this publication

Part I. Informal introduction to Algol 68

* Chapter 1 Preliminaries gives a brief history of Algol 68 and introduces a notation
for production rules.

¢ Chapter 2 Basic concepts introduces standard modes representing plain values (inte-
gers, reals, booleans and characters), as well as variables. This chapter also explains
formulas involving operands of standard modes.

¢ Chapter 3 Stowed and united modes describes ordered sets of values like rows and
structures, and also united modes. It explains how to extract sub rows from a row,
how to select a diagonal in a matrix, et cetera. This chapter also shows how to group
objects into structures. STRING and COMPLEX are introduced.

e Chapter 4 Program structure describes conditional and case constructs that let you
control program flow depending on the value of boolean or integer conditions. It also
describes loops.

* Chapter 5 Procedures and operators explains how to declare procedures and opera-
tors. This chapter brings together recursion and data structures and is a demonstra-
tion of Algol 68’s expressive power. This chapter also describes partial parametrisa-
tion. a68gis one of the few Algol 68 implementations to implement partial parametri-
sation.

¢ Chapter 6 Modes, contexts and coercions explains which modes are well-formed, and
which modes are equivalent. This chapter also summarises the "strengths" that dif-
ferent syntactic positions have and the mode coercions allowed in each one.

* Chapter 7 Transput is about transput which is an Algol 68 term for input-output.
Formatted transput is described in this chapter.

* Chapter 8 Context-free grammar provides a reference for context-free Algol 68 Genie
syntax. This in contrast to the Revised Report, which describes a context-sensitive
syntax for Algol 68.

Part II. Programming with Algol 68 Genie

¢ Chapter 9 Installing and using Algol 68 Genie describes the Algol 68 Genie (a68g),
how to install it on your computer system and how to use the program.

* Chapter 10 Standard prelude and library prelude is an extensive description of the
standard prelude and library prelude. Standard Algol 68 predefines a plethora of
operators and procedures. Algol 68 Genie predefines many operators and procedures
in addition to those required by the standard prelude, that form the library prelude.
This chapter documents these extensions.

XV

LEARNING ALGOL 68 GENIE

Part II1. Example programs

* Chapter 11 Example programs lists a number of a68g programs to demonstrate the
material covered in this publication.

Part IV. Revised report on Algol 68

* Chapters 12—27 constitute a KTEX translation of the revised report on Algol 68. This
report ranks among the difficult publications in computer science.

Part V. Appendices

¢ Appendix A Bibliography has references and suggestions for further reading.

* Appendix B Reporting bugs gives information on how and where to report bugs in
Algol 68 Genie or in this publication.

* Appendix C GNU General Public License is a copy of a68g’s license.

¢ Appendix D GNU Free Documentation License is a copy of the license for parts I, II
and IV of this publication.

xvi

PREFACE

Acknowledgements

{Were | to await perfection, my book would never be finished.
Tai T'ung, 13t century. }

Thanks go to the following people who were kind enough to report bugs and obscuri-
ties, propose improvements, provide documentation, encourage me, or contribute in an-
other way. In alphabetical order: Mark Alford, Bruce Axtens, Maciej Bar¢, Ewan Bennett,
Lennart Benschop, Andrey Bergman, Jaap Boender, Bart Botma, Colin Broughton, Brian
Callahan, Paul Cartwright, Paul Cockshott, Barry Cook, Jiirgen Dabel, Nikita Danilov,
Huw Davies, Neville Dempsey, Koos Dering, Alexey Dokuchaev, Jon Fairbairn, Tomas
Fasth, Sergey Fedorov, Jeremy Frey, Scott Gallaher, Boris Gartner, Jeremy Gibbons, Oleg
Girko, Mayer Goldberg, Shaun Greer, Dick Grune, Keith Halewood, Norman Hardy¥, Chap
Harrison, Jim Heifetz, Andrew Herbert, Chris Hermansen, Lex Herrendorf, Daniel James,
Patrik Jansson, Helmut Jarausch, Trevor Jenkins, James Jones, Rob Jongschaap, Richard
O’Keefe, Henk Keller®t, Wilhelm Kloke, Erwin Koning, Kees Kostert, Has van der Krieken,
Ilya Kurdyukov, Jonathan Lane, Paul Leyland, Karolina Lindqvist, Charles Lindseyt, Patrick
Linnane, Isobel Mailloux, José Marchesi, Neil Matthew, John Maybury, Paul McdJones, Li-
onel Moisan, Sian Mountbatten, Robert Nix, Raymond Nijssen, Filon Oikonomou, Lawrence
D’Oliveiro, France Pahlplatz, Jason Pandolfo, Janis Papanagnou, Omar Polo, Ben Potter,
Lasse Hillerge Petersen, Steven Pemberton, Charles Penman, Richard Pinch, Hannu-Heiki
Puupponen, Henk Robbers, Pedro Rodrigues de Almeida, Tom Rushworth, Alexej Sau-
shev, Marc Schooldergang, Olaf Seibert, David Sherratt, Rubin Simons, Doaitse Swier-
strat, Philip Taylor, Chris Thomson, Valeriy Ushakov, Robert Uzgalis, Adam Vandenberg,
Bruno Verlyck, Nacho Vidal Garcia, Merijn Vogel, Eric Voss, Theo Vosse, Peter de Wachter,
Andy Walker, Jim Watt, Glyn Webster, Sam Wilmott, Lee Wittenberg, Thomas Wolff and
Tom Zahm.

The Algol 68 Genie project would not be what it is without their help.

Marcel van der Veer
Uithoorn, March 2025

3Henk Keller encouraged me to distribute Algol 68 Genie as free software.

xXvii

LEARNING ALGOL 68 GENIE

Biography

Marcel van der Veer is the author, maintainer and
copyright holder of Algol 68 Genie and its documen-
tation. He holds a MSc in Chemistry from the Univer-
sity of Nijmegen and a PhD in Applied Physics from
the University of Twente.

During his academic years, he worked with AL.GOL68C
and FLACC on IBM and compatible mainframes, and
also with ALGOL68RS on large VAXen. Probably be-
cause chemists and physicists tend to take a prag-
matic approach towards computer science, Marcel
was undeterred to write his own Algol 68 implemen-
tation when Algol 68 compilers were phased out when
computer facilities were decentralised in the 1990’s —
Algol 68 typically was a mainframe language.

Marcel started development of Algol 68 Genie in 1992,
and decided to release it under GNU General Public
License in 2001.

XViil

Informal infroduction to Algol 68

Preliminaries

{Languages take such a time, and so do
all the things one wants to know about.
The Lost Road. John Tolkien. }

1.1 A brief history of programming languages

As to better understand the position of Algol 68 among today’s plethora of programming
languages, we should consider the development of modern programming languages.

In the period 1950-1960 a number of programming languages evolved, the descendants of
which are still widely used. The most notable are Fortran by Backus et al., Lisp by Mc-
Carthy et al., Cobol by Hopper et al. and Algol 60 by a committee of European and Ameri-
can academics including Backus. Algol 60 was particularly influential in the design of later
languages since it introduced nested block structure, lexical scope, and a syntax in Backus-
Naur form (BNF). Nearly all subsequent programming languages have used a variant of
BNF to describe context-free syntax.

At the time of the development of Algol 68, programming languages were required to serve
two purposes. They should provide concepts and statements allowing a precise formal de-
scription of computing processes and facilitate communication between programmers, and
they should provide a tool to solve small to medium-sized problems without specialist help.
The context of Algol 68’s development is perhaps adequately illustrated by a quote! from
Edsger Dijkstra: The intrinsic difficulty of the programming task has never been refuted
... T vividly remember from the late 60’s the tendency to blame the programming languages
in use and to believe in all naivety that, once the proper way of communicating with the
machines had been found, all programming ills would have been cured.

The early procedural languages served above purposes required for them. However, the
evolving need to build complex interactive systems asked for decomposition of a problem
into "natural" components, resulting in object oriented programming languages starting

ITranscript from keynote delivered at the ACM 1984 South Central Regional Conference.
Source: E. W. Dijkstra Archive - the manuscripts of Edsger W. Dijkstra;
https://www.cs.utexas.edu/users/EWD/.

https://www.cs.utexas.edu/users/EWD/

LEARNING ALGOL 68 GENIE

as early as the 1960’s. The object oriented and procedural paradigms each have strengths
and weaknesses and it is not always clear which paradigm is best suited to certain tasks,
even large ones. In numerical and scientific computing for instance, the benefit of object
oriented languages over procedural languages is controversial since in number crunching,
efficiency is a top priority.

The period 1960 to 1980 produced most of the major language paradigms now in use. Al-
gol 68 was conceived as a successor to Algol 60. Its syntax and semantics became even
more orthogonal and were defined by a Van Wijngaarden grammar, a formalism designed
specifically for this purpose. Simula by Nygaard and Dahl was a superset of Algol 60 sup-
porting object oriented programming, while Smalltalk by Kay, Ingalls and Kaehler, was a
newly designed object oriented language. C, the Unix system programming language, was
developed by Ritchie and Thompson at Bell Laboratories between 1969 and 1973. Prolog
by Colmerauer, Roussel, and Kowalski was the first logic programming language. ML by
Milner built a polymorphic type system on top of Lisp, pioneering statically typed func-
tional programming languages. Each of these languages spawned a family of descendants,
and most modern languages count at least one of them in their ancestry. Other important
languages that were developed in this period include Pascal, Forth, Scheme and SQL.

The decade 1980-1990 saw consolidation of imperative languages. Rather than introducing
new paradigms, ideas from the 1970’s were elaborated. C++ combined object oriented pro-
gramming and system programming. The United States government standardised Ada as
a system programming language for defense contractors. Mainly in Japan major efforts
were spent investigating so-called fifth-generation programming languages that incorpo-
rated logic programming constructs. The functional languages community standardised
ML and Lisp. Research in Miranda, a functional language with lazy evaluation, began to
take hold in this decade. An important trend in 1980’s language design was increased focus
on programming large-scale systems through the use of modules, reflected in the develop-
ment of Modula, Ada and ML. Although major new paradigms for imperative languages did
not appear, many researchers elaborated on existing ideas, for example object oriented pro-
gramming, and adapting them to new contexts, for example to distributed systems. Some
other notable languages from the 1980’s are Objective C and Perl.

During the 1990’s recombination and maturation of existing ideas continued. An impor-
tant motivation in this period was productivity. Many rapid application development (RAD)
languages emerged, which usually were descendants of older, typically object oriented, lan-
guages that were equipped with an IDE and garbage collection. These languages included
Object Pascal, Visual Basic, and Java. Java in particular received much attention. More
radical and innovative were new scripting languages. These did not directly descend from
other languages and featured new syntax and liberal incorporation of features. Many con-
sider these scripting languages as more productive than RAD languages, though others will
forward that scripting languages may make small programs simpler but large programs
are more difficult to write and maintain. Nevertheless, scripting languages came to be the
most prominent ones used in connection with the internet. Some important languages that
were developed in the 1990’s are Haskell, Python and PHP.

4

INFORMAL INTRODUCTION TO ALGOL 68

Some current trends in programming languages are mechanisms for security and reliabil-
ity verification, alternative mechanisms for modularity, component-oriented software de-
velopment, constructs to support concurrent and distributed programming, metaprogram-
ming, and integration with databases. The 21" century has to date seen the introduction
of for example C#, Visual Basic.NET and Go.

Algol 68 can be placed in the history of programming languages more or less as in below
diagram. Note that some languages like Euler are not mentioned in this diagram. Some
claim that Ada is Algol 68’s successor but many dispute that. Therefore Ada is mentioned
in above diagram, but there is no line drawn from Algol 68 to Ada. An overview of the
development of Algol, and implementations, can be found at Paul McJones’s page {A}.

1958 Algol 58
|
1960 Algol 60
w

1962 Simula
1963 Algol 60

(Revised)
1967 Simula 67
1968 Algol 68 Algol W

|

1970 Pascal
1976 Algol 68 C

(Revised)
1983 Ada
1984 Ctt

1.2 A brief history of Algol 68

Algol, ALGOrithmic Language, is a family of imperative computer programming languages
which greatly influenced many other languages and became the de facto way algorithms
were described in textbooks and academic works for almost three decades. The two speci-
fications relevant to this publication are Algol 60, revised in 1963, and Algol 68, revised in
1976. Algol 58, originally known as IAL (International Algebraic Language), was an early
member of the Algol family soon superseded by Algol 60. Algol 58 introduced a compound
statement which was restricted to flow of control only and did not relate to lexical scope as
do Algol 60’s blocks.

LEARNING ALGOL 68 GENIE

Ideally, a programming language supports systematic expression of algorithms by offering
appropriate control structures and data structures, and a precise, consistent formal defi-
nition to avoid surprises and portability issues resulting from obscure details that are left
to the discretion of an implementation; for example the number of implementation-defined
features in the C standard is notorious. Members of the Algol family (Algol 60 and Algol 68,
Simula, Pascal and also Ada, et cetera) are considered reasonable approximations of such
"ideal" languages, although all of them have strong points as well as disadvantages. Al-
gol 68 offers appropriate means of abstraction and exemplary control structures that leads
to a good understanding of programming. Its orthogonality results in an economic use of
language constructs making it a beautiful means to write algorithms.

The design of Algol was firmly rooted in the computing community, a contemporary term
for the small but growing international community of computer professionals and scien-
tists. It formed an international platform for discussing programming languages, compiler
construction, program construction, et cetera, and thus Algol had an important part in
erecting computer science as an academic discipline in its own right. Algol 60 was designed
by and for numerical mathematicians; in its day it was the Lingua Franca of computer
science. The language introduced block structure with lexical scope and a concise BNF def-
inition that were appreciated by people with a background in mathematics, but it lacked
compilers and industrial support which gave the advantage to languages as Fortran and
Cobol. To promote Algol, its application range had to be extended. IFIP? Working Group 2.1
Algorithmic Languages and Calculi (WG 2.1), that to this day has continuing responsibility
for Algol 60 and Algol 68, assumed the task of developing a successor to Algol 60.

In the early 1960’s WG 2.1 discussed this successor and in 1965 descriptions of a language
Algol X based on these discussions were invited. This resulted in various language pro-
posals by Wirth, Seegmiiller and Van Wijngaarden?® and other significant contributions by
Hoare and Naur. Van Wijngaarden’s paper Orthogonal design and description of a formal
language* featured a new technique for language design and definition and formed the
basis for what would develop into Algol 68. Many features found in Algol 68 were first
proposed in ALGOL BULLETIN by the original authors of Algol 60 like Peter Naur, by new
members of WG 2.1 like Tony Hoare and Niklaus Wirth, and by many others from the
world-wide computing community.

[Koster 1996] gives a first hand account of the events leading to Algol 68. Algol 68 has
had a large influence on the development of programming languages since it addressed
many issues; for example orthogonality, a strong type system, procedures as types, memory

2IFIP, the International Federation for Information Processing is an umbrella organisation for
national information processing organisations. It was established in 1960 under the auspices of
UNESCO.

3Adriaan van Wijngaarden (1916 - 1987) is considered by many to be the founding father of com-
puter science in the Netherlands. He was co-founder of IFIP and one of the designers of Algol 60
and later Algol 68. As leader of the Algol 68 committee, he made a profound contribution to the field
of programming language design, definition and description.

4Available from [Karl Kleine’s collection].

INFORMAL INTRODUCTION TO ALGOL 68

management, treatment of arrays, a rigorous description of syntax, and parallel processing,
but also ideas that caused debate over the years such as context-sensitive coercions and
quite complicated input-output formatting. After various meetings WG 2.1 had not reached
unanimous consent. Algol 68 was eventually produced by members who wanted a new
milestone in language design. Other members, notably Wirth and Hoare, wanted to shorten
the development cycle by improving Algol 60, which eventually produced Algol W and later
Pascal. Yet other members wrote a brief minority report outlining their view on a new
language; many years later it was commented that no programming language developed
since would have satisfied that vision.

Where Algol 60 syntax is in BNF form, Algol 68 syntax is described by a two-level W-
grammar (W’ for Van Wijngaarden) that can define a context-sensitive grammar. Formally,
in a context-sensitive grammar the left-hand - and right-hand side of a production rule may
be surrounded by a context of terminal and nonterminal symbols. The concept of context-
sensitive grammar was introduced by Chomsky in the 1950’s to describe the syntax of natu-
ral language where a word may or may not be appropriate in a certain position, depending
on context. Analogously, Algol 68 syntax can rigorously define syntactic restrictions; for ex-
ample, demanding that applied-identifiers or operators be declared, or demanding that
modes result in finite objects that require finite coercion, et cetera. To enforce such syntac-
tic constrictions, a context-free syntax must be complemented with extra rules formulated
in natural language to reject incorrect programs. This is less elegant, but defining docu-
ments for programming languages with a context-free grammar do look less complex than
the Algol 68 (revised) report — compare the context-free Algol 68 Genie syntax in chapter 8
to the Revised Report syntax in Part IV.

Probably because of the formal character of the Revised Report, which requires study to
comprehend, the misconception got hold that Algol 68 is a complex language, while in fact
it is rather lean. [Koster 1996] states that the alleged obscurity of description is denied by
virtually anyone who has studied it. Perhaps it only made the impression of being complex
at the time of its introduction around 1970, since one may argue that the specification of
many contemporary languages, including that of modern C, is more complex than that of
Algol 68 [Henney 2018]. Algol 68 was defined in a formal document, first published in
January 1969, and later published in Acta Informatica and also printed in Sigplan Notices.
A Revised Report was issued in 1976; this publication includes a IXTgX translation. Algol 68
was the first major language for which a full formal definition was made before it was
implemented. Though known to be terse, the Revised Report does contain humour solis
sacerdotibus — to quote from [Koster 1996]: The strict and sober syntax permits itself small
puns, as well as a liberal use of portmanteau words. Transput is input or output. Stowed’ is
the word for structured or rowed. Hipping is the coercion for the hop, skip and jump. MOID
is MODE or void. All metanotions ending on ETY have an empty production. Just reading
aloud certain lines of the syntax, slightly raising the voice for capitalized words, conveys a
feeling of heroic and pagan fun (... Such lines cannot be read or written with a straight
face.

Algol 68 was designed for programmers, not for compiler writers, in a time when the field

LEARNING ALGOL 68 GENIE

of compiler construction was not as advanced as it is today. Implementation efforts based
on formal methods generally failed; Algol 68’s context-sensitive grammar required some
invention to parse®; consider for instance x (y, z) that can be either a call or a slice
depending on the mode of x, while x does not need to be declared before being applied.
At the time of Algol 68’s presentation compilers usually were made available on main-
frames by computing centres, which may explain why Algol 68 was popular in locations
rather than areas, for instance Amsterdam, Berlin or Cambridge. It appears that Algol 68
was relatively popular in the United Kingdom, where the ALGOL68R , ALGOL68RS and
ALGOL68C compilers were developed. Hence Algol 68 compilers were few and initiatives to
commercialise them were relatively unsuccessful; for instance the FLACC compiler sold just
twenty-two copies®. In the end industry did not pick it up — the market for new universal
programming languages evidently did not develop as hoped for during the decade in which
the language was developed and implemented. Algol 68 was not widely used, though the
influence it had on the development of computer science is noticeable to this day. Interest-
ingly, two other members of the Algol family, Pascal and Ada, still have their niches but
also did not spread as widely as some may have hoped.

1.3 Notation of syntax

In Part I, a method to describe Algol 68 Genie syntax is used that closely follows the nota-
tion in Part IV, the Algol 68 Revised Report {15:.3.2.2}. However, the syntax rules in Part I
are context-free rules, while the Revised Report describes a context-sensitive W-grammar.
In the Revised Report, production rules are derived from hyper-rules and metaproduction
rules by substitution of notions (generally, bold upper-case words). This substitution mech-
anism is adopted in Part I to introduce a context-free grammar and will be explained in
this section. We will forego the difference between hyper-rules, metaproduction rules and
production rules since Part I does not introduce a context-sensitive grammar. Following
conventions from the Revised Report are adopted:

(i) A syntactic notion is a bold word, with optional hyphens or blank space, for example
integral-denotation. A notion that is to be substituted, generally is a bold upper-
case word, for instance UNITED. To improve legibility syntactic notions are provided
with hyphens, however in production rules they are mostly provided with blanks. Ty-
pographical display features, such as blank space, hyphen, and change to a new line
or new page, are of no significance (but see 244.4.d). For instance, integral denota-
tion means the same as integral-denotation or integraldenotation.

(i1) To write a plural form of a syntactic notion, the letter s is appended to its singular
form, for instance identifiers. Also, the initial letter of a lower-case syntactic notion

5Algol 68 Genie employs a multi-pass scheme to parse Algol 68 [Lindsey 1993] {9.9}.
6Source: Chris Thomson, formerly with Chion Corporation, on comp.lang.misc [1988].

INFORMAL INTRODUCTION TO ALGOL 68

may be capitalised, for instance Formulas that would follow the production rule for
formula.

(iii) Within a production rule, a reference as for example identifier {8.6.2} means that
the notion identifier is defined in section 8.6.2.

(iv) A rule for a syntactic notion consists of the following items, in order:

* an optional asterisk ;
{If a notion is preceded by an optional asterisk, the notion is not used in other
rules and is used as an abstraction for its alternatives, for example:
*operand: monadic operand; dyadic operand.}

* a non-empty bold notion N ;
* a colon-symbol ;

* a non-empty sequence of alternatives for N separated by semicolon-symbols;
within an alternative, a comma-symbol means "is followed by".

* a point-symbol.

General production rules in Part I (but hyper-rules or metaproduction rules in the Revised
Report), are:

e EMPTY:.
This is the empty production.
¢ NOTION list: NOTION; NOTION, comma {8.2} symbol, NOTION list.

* NOTION list proper: NOTION, comma {8.2} symbol, NOTION list.
A list-proper contains at least two NOTIONSs.

* NOTION option: NOTION; EMPTY.

¢ NOTION sequence: NOTION; NOTION, NOTION sequence.

¢ NOTION series: NOTION; NOTION, semicolon {8.2} symbol, NOTION series.
For example, with above rules we can define parameter-list-option by substituting NO-
TION for parameter-list and parameter respectively to obtain:

¢ parameter list option: parameter list; EMPTY.

¢ parameter list: parameter; parameter, comma {8.2} symbol, parameter-list.
From this we see that a parameter-list-option is possibly empty, or possibly contains one
parameter or multiple parameters separated by comma-symbols. Typically, in C and

Pascal documentation, graphic syntax-diagrams are used to describe syntactic constructs;
for instance a parameter-list would be depicted as:

LEARNING ALGOL 68 GENIE

parameter ——

Another example for a production rule is MARKER frame:

* MARKER frame:
insertion option, replicator option, letter s {8.4} option, MARKER;

Viewing MARKER as a parameter, we can for instance deduce the production rule for a
letter-z-frame by substituting MARKER for z-frame:

¢ letter z frame:
insertion option, replicator option, letter s {8.4} option, letter z;

More common production rules encountered in Part I are:

¢ length: long {8.2} symbol sequence; short {8.2} symbol sequence.
¢ qualifier: heap {8.2} symbol; new {8.2} symbol; loc {8.2} symbol.

¢ sign: plus {8.2} symbol, minus {8.2} symbol.

¢ *conditional clause: choice using boolean clause {8.9.1}.

¢ *case clause: choice using integral clause {8.9.1}.

¢ *conformity clause: choice using UNITED {15,.5} clause {8.9.1}.

As indicated earlier, in a context-sensitive grammar, the left-hand - and right-hand side
of a production rule may be surrounded by a context of terminal and nonterminal sym-
bols. This can be clearly recognised in the Revised Report. The Revised Report employs
hyper-rules and metaproduction rules to construct context-sensitive grammars. For in-
stance, unique declaration of all applied tags in a program (identifiers, operators, and so
forth) is ensured via LAYER, PROP and related rules, while well-formed modes are con-
structed via SAFE and related rules. One way to view the matter is as follows: substituting
hyper-rules and metaproduction rules to obtain production rules (which is the machinery
of a two-level grammar) is an ingenious technique to generate a tailored context-sensitive
grammar needed to parse a particular Algol 68 program. Since every correct particular
Algol 68 program has its specific grammar to parse it, a universal Algol 68 grammar, be-
ing the set of all grammars for every possible correct Algol 68 program, would be infinite.
With this in mind, Part IV of this publication is easier to comprehend. In Part I, being an
informal introduction, a context-free grammar is presented and syntactic restrictions are
written in natural language.

10

Basic concepts

{Lisp and Algol, are built around a kernel that
seems as natural as a branch of mathematics.
Metamagical Themas. Douglas Hofstadter. }

2.1 Displays

We start this informal introduction with a feature that contributes to the elegance of Al-
gol 68 programs. It is important to understand that in Algol 68, every construct except for a
declaration yields a value. Imagine a desk calculator where the result of the last operation
is visible in the display. Algol 68 works in a similar way - there is a "display" by which the
result of the last operation is made visible to the surrounding statements'. With this in
mind, and if you have programmed before, you may understand next small program that
reads whole numbers from the keyboard and echoes the factorial of each number to the
screen:

OP FAC = (INT k) INT: # A new monadic operator yielding k!#
IF k =0
THEN 1
ELSE k * FAC (k - 1)
FI;

WHILE INT n = read int; n >= 0
DO print ((n, "! =", FAC n))
oD

In above example, the THEN and ELSE branches yield the result of their respective state-
ments; in this case those values are yielded as the result of tail-recursive operator FAC. Also
note the double-parenthesised call of print; the inner parenthesis form a row-display,
which is a denotation for a row, in this case a row of printable values.

In technical terms, the display is the top of the evaluation stack.

11

LEARNING ALGOL 68 GENIE

2.2 Modes and values

Two basic concepts in Algol 68 are mode and value. In other programming languages a
mode is for instance called a type. At the time of development of Algol 68, two notable
scientific-engineering programming languages in use were Fortran and Algol 60. At the
time Fortran 66 let a programmer manipulate values of type INTEGER, REAL, COMPLEX
and LOGICAL, and rows thereof. Algol 60 just offered the types INTEGER, REAL, BOOLEAN
and rows thereof. On the other hand Lisp offered lists, a data structure at the time not yet
supported by the former two languages, for example.

Algol 68 brought this to a next level by introducing next to basic modes INT , REAL , BOOL
and CHAR (with obvious meaning) a mechanism to define other modes by compounding
other modes into rows, structures, unions, and pointers. Moreover Algol 68 offers a method
to define new operators that operate on values of plain or compounded modes. These fea-
tures are common now in many programming languages, but around 1970 those were an
innovation.

Values can be compounded to form text strings, complex numbers, rows and matrices
etcetera. Text, which is a row of characters, is so common that this is the only compounded
mode with a denotation, for instance "denotation™. Algol 68 provides the collateral-
clause to write values for other compounded modes. In chapter 3 this is described in detail;
in brief, a collateral-clause is a parenthesised comma-separated list written as either

(..o0)
or
BEGIN ... END.

For example, the value of a complex number might be written as (0.5, -0.5) which

represents the value § — L.

A typical use of a collateral-clause comes with procedure print that takes as single
argument a row of a union of all printable modes. This causes the Algol 68 idiosyncrasy that
input-output statements working on multiple objects have double-parenthesised calls?, for
example

print (("Step ", n, " yields ", z, new line))

When printing a single object, the collateral-clause is not needed because Algol 68 will
cast a value to a row where context both allows and requires it (see sections 6.5 and 6.4),
So one can write

print (new line)

Algol 68 transput is described in chapter 7.

2Except in ALGOL68C that deviated from the input-ouput specification in this respect.

12

INFORMAL INTRODUCTION TO ALGOL 68

There must of course also be a way to write a ’constant’ value for a mode, which in Algol 68
terminology is a denotation. Like any other language, Algol 68 has common denotations
for all basic modes.

The symbols INT, REAL, BOOL and CHAR are examples of mode-indicants in Algol 68.
A mode-indicant might be called a type identifier in other programming languages. A
mode-indicant is a declarer that specifies a mode. Mode-indicants are written in capi-
tal letters and can be as long as you like though no intervening spaces are allowed; however
a68g allows intervening underscores to be part of a mode-indicant.

In Algol 68 vOID indicates the absence of a value so has different status than a mode®
though there is a single denotation: EMPTY.

2.3 Whole numbers

In Algol 68 whole numbers (integers) have mode INT and are elements of Z, but not the
other way round: not all elements of Z are integers since a computer is a finite object. The
identifier max int from the standard-prelude {10.4} represents the largest representable
integer on the platform on which a program runs:

$ a68g —-p maxint
+9223372036854775807

or

$ a68g -p ’'long max int’
+170141183460469231731687303715884105727

Note that within an identifier white space has no meaning so max int is the same iden-
tifier as maxint. Compare max int to the pre-defined constant INT_MAX in C. Sometimes
one needs to work with integral values larger than max int. To that end Algol 68 Genie
supports modes LONG INT and LONG LONG INT.In a68g, the range of LONG LONG INT is
default circa twice the length of LONG INT but can be made arbitrarily large through the
option --precision {9.6.4}. The respective maximum values for the three integer lengths
available in a68g depend on the platform on which the program was built.

3In the Revised Report, "MOID" is "MODE or void".

13

LEARNING ALGOL 68 GENIE

On platforms as for example 1386 or amd64 with a recent version of gcc:

Identifier Value Remarks
max int 203 1

long max int 2127 _q

long long max int 100 — 1 a68qg library

On other platforms:

Identifier Value Remarks
max int 231 1

long max int 10%° — 1 a68g library
long long max int 100 —1 a68qg library

As in any programming language, one writes the denotation for an integer in Algol 68 as a
sequence of digits 0 to 9. Note that in Algol 68 an integral-denotation is unsigned; it is in
W, not in Z. A sign is a monadic-operator, so if one writes —1 or +1 you will have written
a formula, {2.6}. In standard Algol 68, a denotation for LONG INT must be preceded by
the reserved word LONG and a denotation for LONG LONG INT must be preceded by the
reserved words LONG LONG. The production rule for an integral-denotation is:

* integral denotation:
length {1.3} option, digit {8.3} sequence.

For instance:

a) 6048000 « 6 048 000
b) LONG 266716800000 - LONG 266 716 800 000
¢) LONG LONG

3930061525912861057173624287137506221892737197425280369698987

with value (c) being 3'27. Note that white space has no meaning in an integral-denotation.
a68g relaxes the use of LONG prefixes when the context imposes a mode for a denotation,
in which case a denotation of a lesser precision is automatically promoted to a denota-
tion of the imposed mode.

14

INFORMAL INTRODUCTION TO ALGOL 68

2.4 Identifiers and identity declarations

Suppose one wants to use the value 8 in various parts of a program, then a symbolic ref-
erence to this value is practical. Algol 68 provides an identity-declaration that binds
an identifier to a constant value. Similar constructions in other languages are CONST
declarations in Pascal, PARAMETER statements in Fortran, or #define directives in the C
preprocessor. The identity-declaration for the above mentioned integer would be:

INT measurements done = 8

In Algol 68, white space is only required when concatenating terms introduces ambiguity,
so you could write:

INTmeasurementsdone=8
but it is of course common practice to add white space to improve clarity*.

An identity-declaration is defined as:

¢ identity declaration:
formal declarer {8.11}, identity definition list.

¢ identity definition:
identifier {8.6.2}, equals {8.2} symbol, strong unit {8.9.5}.

A mode-indicant can be used as a formal-declarer. The formal-declarer cannot be
vOID . The difference between a formal-declarer and an actual-declarer will be ex-
plained in chapter 3. An identifier is a sequence of one or more characters which starts
with a lower-case letter and continues with lower-case letters or digits:

¢ identifier:
letter {8.4};
identifier, letter {8.4};
identifier, digit {8.3};
identifier, underscore {8.2} symbol sequence, identifier.

An identifier can be interrupted by spaces or tab characters, but those are ignored. Hence
maxint is the same identifier as max int. a68g allows underscores in identifiers, but
an underscore is part of the identifier unlike white space. Examples of valid identifiers
are:

i « rate 2 pay -« eigen value 3

The following are not identifiers:

4Also in other languages, like Fortran, white space has no meaning. Even so, programmers add
white space to improve legibility, hardly anyone leaves it all out.

15

LEARNING ALGOL 68 GENIE

a) 3d vector
b) particle-energy

¢) rootSymbolPointer

Example (a) starts with a digit, (b) contains a character which is neither a letter nor a digit,
and (c) contains capital letters. An identifier looks like a name in the sense of that word,
but we do not use the term "name" because in Algol 68 the term "name" signifies a value
refering to another one, such as a "variable".

The right hand side of the equals-symbol in an identity-declaration is a unit yielding
a value. The unit can be any piece of program text which yields a value of the mode spec-
ified by the mode-indicant. A denotation is an example of a unit. Other units yielding
integers are the routines® read int , read long int and read long long int that
yield an integral value read from standard input; if you did not redirect input, this would
be your keyboard. Since an identity-declaration is a not a unit and cannot yield a value,
one cannot write:

INT i = INT j = 1
Instead one must write:
INT i = 1; INT j = i

There are two ways of declaring multiple identifiers. The first way is sequential declara-
tion:

INT 1 = 1; INT j = read int

The semicolon-symbol "; " is called the go-on-symbol. One can in principle contract the
above declarations as follows:

INT 1 = 1, j = read int

The comma-symbol separates the two declarations, but this does not mean that i is
declared first, followed by j. It is up to a68g to determine which declaration is elabo-
rated first; they could even be done in parallel. This is known as collateral elaboration,
as opposed to sequential elaboration determined by the go-on-symbol (the semicolon-
symbol). Therefore a risk of combining two identity-declarations as in:

INT one = 1, start = one

is that start is left undefined if one = 1 is elaborated last. When a68g executes above
declaration, it may or may not end in a runtime error since an uninitialised identifier,
in casu one before it is associated with 1, is being used.

5These identifiers come from ALGOL68C .

16

INFORMAL INTRODUCTION TO ALGOL 68

Actually, in Algol 68 all declarations of objects are an identity-declaration though abbre-
viations are allowed since programs would become verbose and terse. You will see this for
instance when reading about variable-declarations and procedure-declarations.

2.5 Real numbers

The term "real number" here is a subtle misnomer since in the mathematical sense real
numbers are not countable and computers cannot represent them exactly because a com-
puter is a finite object. Hence in programming, real numbers are elements of R, but not
the other way round: not all elements of R are real numbers. The common way to treat
real numbers are either as rational numbers with separate numerator and denominator,
as fixed-point numbers which is a rational with a same denominator for all numbers, or as
a floating-point number that stores with a fixed-point number an exponent for the denom-
inator. Floating-point numbers are a compromise between range, precision and processing
time. The optimum for that compromise varies with the application.

As in many programming languages, in Algol 68 real numbers are floating point numbers.
The smallest REAL which a68g can handle is declared in the standard prelude as identi-
fier min real . The largest REAL which a68g can handle is declared as identifier max
real in the standard prelude. Compare these identifiers to their equivalents DBL_MIN
and DBI_MAX in C. Also, there is an identifier small real that gives the smallest value
that when added to 1.0, yields a value larger than 1.0, and thus is a measure of precision.
As with integers, sometimes one needs to use real values with higher precision than offered
by REAL. Algol 68 Genie supports modes LONG REAL and LONG LONG REAL. In a68g the
precision of LONG LONG REAL is default circa twice that of LONG REAL but can be made
arbitrarily large through the option --precision {9.6.4}. Below are the respective limiting
values for the three real lengths available in a68g, which were chosen under the observa-
tion that most multi-precision applications require 20-60 significant digits.

17

LEARNING ALGOL 68 GENIE

On platforms as for example 1386 or amd64 with a recent version of gcc:

Identifier Value Remarks
max real 1.7976931 ... x 10308

long max real 1.1897314 ... x 104932

long long max real 1 x 10999999 a68g library
min real 2.2250738 ... x 107308

long min real 3.3621031 ... x 1074932

long long min real 1 x 107999999 a68g library
small real 2.2204460 ... x 10716

long small real 1.9259299 ... x 10734

long long small real 1x10793 a68g library

On other platforms, LONG REAL is implemented in software:

Identifier Value Remarks
max real 1.7976931 ... x 10308
long max real 1 x 10999999
long long max real 1 x 10999999

a68g library
a68g library

min real 2.2250738... x 107308
long min real 1 x 107999999 a68g library
long long min real 1 x 107999999 a68g library
small real 2.2204460 - - - x 10716
long small real 1x10728 a68g library
long long small real 1x10793 a68g library

A real-denotation consists of digits followed by at least either a fractional part point-
symbol, digit-sequence or an exponent-part. The production rules for a real-denotation
read:

* real denotation:
length {1.3} option, digit {8.3} sequence, exponent part;
length {1.3} option, digit {8.3} sequence option, point {8.2} symbol,
digit {8.3} sequence, exponent part option.

* exponent part:
letter e {8.4} symbol, sign option, digit {8.3} sequence.

Asis common, e is the times ten to the power {8.2} symbol; for example 9e-9 means 9x 1077,
Real-denotations are unsigned, as are integral-denotations, but the exponent can be
preceded by a sign®. In standard Algol 68, a denotation for LONG REAL must be preceded

60ne of the minor difficulties with Algol 68 is that in INT i = -9, the - means the monadic-
operator, which could have been user-defined, whereas in REAL x = le-9, the - is the mathe-
matical minus-sign, even if the monadic-operator - has been re-defined.

18

INFORMAL INTRODUCTION TO ALGOL 68

by the reserved word LONG and a denotation for LONG LONG REAL must be preceded by
the reserved words LONG LONG. Example real-denotations are:

a) .5 « 0.5 « 5.0e-1 =« 5e-1
b) LONG 2.718281828459045235360287471

¢) LONG LONG
0.707106781186547524400844362104849039284835937688474036588339869

with value (b) representing e and value (c) representing %\/5 . As with integral-denotations,
a68g relaxes the use of LONG prefixes when the context imposes a mode for a denotation,
in which case a denotation of a lesser precision is automatically promoted to a denota-
tion of the imposed mode.

Example identity-declarations for values of mode REAL are:

REAL e = 2.718 281 828,
electron charge = 1.6021e-19 # C #,
cost per unit = 25.00 # Euro #

Since a68g admits the indicant DOUBLE for LONG REAL, you could also write:
DOUBLE pi times 2 = 2 * long pi
The value of 7 is declared in the a68g standard prelude as the identifier pi with three

precisions:

® REAL pi = 3.14159265358979
¢ LONG REAL long pi = 3.1415926535897932384626433832795

¢ LONG LONG REAL long long pi =
3.14159265358979323846264338327950288419716939937510582097494459

The length of LONG 1LONG modes can be made arbitrarily large through the option --precision
{9.6.4}. So one can easily print a hundred digits of = through:

$ a68g -p "long long pi" —--precision=100
+3.141592653589793238462643383279502884197169399375105820974944592307816406
28620899862803482534211706798214808651328231e +0

or Euler’s number e, analoguously:

$ a68g -p "long long exp(l)" —--precision=100
+2.718281828459045235360287471352662497757247093699959574966967627724076630
35354759457138217852516642742746639193200306e +0

19

LEARNING ALGOL 68 GENIE

It was mentioned above that in an identity-declaration, the unit must yield a value
of the mode required by the declarer. Now consider this example identity-declaration
where the unit yields a value of mode INT:

REAL z = read int

However, the mode required by the declarer is REAL. Depending on the context, in Al-
gol 68 a value can change mode through a small set of implicit coercions. There are five
contexts in Algol 68: strong, firm, meek, weak and soft. The right-hand side of an identity-
declaration is a strong context. In a strong context, the mode of a unit is always imposed
(in this case by the formal-declarer on the left-hand side). One of the strong coercions is
widening that can for instance widen a value of mode INT to a value of mode REAL.

The procedure print will print a real argument, per default to standard output, as in:
print (pi) + print (LONG 1.732050807568877293527446342)

a68gimplements the routines read real,read long real and read long long real
that yield a real value read from standard input, so you may write:

REAL z = read real;

On a right-hand side of an identity-declaration, the strong context forces the routine
read real to yield a real value by a coercion called deproceduring 6.5.1.

2.6 Formulas

Formulas, often called expressions in other programming languages, consist of operators
working on operands. Operators are encapsulated algorithms that compute a value from
their operands. In chapter 5, we will look at operators in more detail, as well as how
to define new ones. Algol 68 provides a rich set of pre-defined operators in the standard
prelude, described in chapter 10, and one can define more as needed. This chapter describes
the operators in the standard-prelude which can take operands of mode INT, REAL,
BOOL or CHAR. The syntax for a formula reads:

¢ formula:
monadic operator {8.6.3} sequence, monadic operand;
dyadic operand, dyadic operator {8.6.3}, dyadic operand.

* monadic operand:
secondary {8.9.3};

* dyadic operand:
monadic operator {8.6.3} sequence option, monadic operand;
formula.

20

INFORMAL INTRODUCTION TO ALGOL 68

¢ *operand: monadic operand; dyadic operand.

Secondaries {8.9.3} are operands in formulas. Operators come in two forms: monadic-
operators that take one operand and dyadic-operators that take two operands. Operator-
symbols are written as a combination of one or more special symbols, or in upper-case let-
ters like a mode-indicant. A formula can be the unit of an identity-declaration. Thus
the following identity-declarations are both valid:

REAL x = read real + 1.0; REAL y = ABS sin (2 * pi *x x)

White space is not significant in a formula as long as it has a unique meaning. However,
an operator cannot contain white space, in contrast to an identifier. The reason for this is
that in Algol 68, adjacent identifiers have no meaning but adjacent operators do.

A monadic-operator has only one operand, while a dyadic-operator has two oper-
ands. A monadic-operator precedes its operand. For example, the monadic minus -
reverses the sign of its operand: —k. There is, likewise, a monadic + operator which re-
turns its operand: +k. Hence monadic-operators - or + take an operand of mode INT
and yield a value of mode INT. They can also take an operand of mode REAL in which case
they will yield a value of mode REAL. The operator ABS takes an operand of mode INT
and yields the absolute value of mode INT. For example, ABS -1 yields 1. In the standard
prelude is another definition of ABS that takes an operand of mode REAL yielding a value
of mode REAL. When monadic-operators are combined, they are of course elaborated in
right-to-left order. That is, in ABS -1, — acts on 1 to yield —1, and then ABS acts on —1 to
yield 1. Another monadic-operator which takes an INT or REAL operand is STGN which
yields —1 if the operand is negative, 0 if it is zero, and +1 if it is positive. For modes that
have multiple precisions, Algol 68 defines the monadic-operator L.ENG that will increase
precision by one LONG, and the monadic-operator SHORTEN that will decrease precision
by one LONG, for the operand value. Note that a runtime error may result in case the value
of a longer precision cannot be represented in a shorter precision, though REAL values will
be rounded.

It was mentioned that in a strong context, a value of mode INT can be coerced by widen-
ing to a value of mode REAL. But how do we convert a value of mode REAL to a value of
mode INT? In Algol 68 this is impossible by implicit coercion. The reason behind this de-
sign choice in Algol 68 is that the fractional part cannot be implicitly discarded. You must
explicitly state how the conversion should take place. Algol 68 offers monadic operators
to convert a value of mode REAL to a value of mode INT. If one wants to convert a REAL
value to an INT, one must use the operator ROUND or ENTIER . The operator ROUND takes
a single operand of mode REAL and yields an INT whose value is the operand rounded
to the nearest integer. Thus ROUND 2.7 yields 3, and ROUND 2.2 yields 2. The same rule
applies with negative numbers, thus ROUND -3.6 yields —4. Essentially, one gets an inte-
ger result that differs not more than 0.5 from the real value. The operator ENTIER takes a
REAL operand and likewise yields an INT result, but the yield is the largest integer that
is not larger than the real operand. Thus ENTIER 2.2 yields 2, ENTIER -2.2 yields —3.

21

LEARNING ALGOL 68 GENIE

A basic dyadic-operator is addition, +; for instance:
print (read int + 1)

The plus operator + takes two operands of mode INT and yields a sum of mode INT. It is
also defined for two operands of mode REAL yielding a sum of mode REAL :

REAL x = read real + offset

As mentioned, the maximum integer which a68g can represent is max int and the maxi-
mum real is max real. Addition could give a sum which exceeds those two values, which
is called overflow. Algol 68 leaves such case undefined, meaning that an implementation
can choose what to do. a68g will give a runtime error in case of arithmetic overflow, for
example:

1 (print (((1 + max int)

1
a68g: runtime error: 1: INT math error (numerical result out of
range) (detected in [] "SIMPLOUT" closed-clause starting at " ("
in this line).

The dyadic minus operator for subtraction - also takes two operands of mode INT or two
operands of mode REAT and will yield an INT or REAL difference respectively:
INT difference = a - b, REAL distance = end - begin

Since a formula yields a value of a particular mode, one can use it as an operand for
another operator. For example:

INT sum = a + b + c

the order of elaboration being that operands are elaborated collaterally, and then the
operators are applied from left-to-right in this particular example, since the two operators
have the same priority. The times operator * performs arithmetic multiplication and takes
INT operands yielding an INT product. For example:

INT product = 45 % 36

Likewise, » is also defined for multiplication of two values of mode REAL:

REAL pi 2 = 2.0 % pi

We already saw with + and - that a formula can be an operand in another formula:

INT factorial 6 = 2 = 3 = 4 « 5 % 6;
REAL interpolation = slope * x + intercept

In Algol 68, the common precedence of brackets over exponentiation, then division, then
multiplication, and then addition and subtraction, applies and it is implemented by giving
a priority to operators. The priority of multiplication is higher than the priority for addition

22

INFORMAL INTRODUCTION TO ALGOL 68

or subtraction. The priority of the dyadic-operators + and - is 6, and the priority of
the » operator is 7. For example, the value of the formula 2 + 3 % 4 is 14. It is possible
to change the priority of standard operators, but that does not make sense — priority-
declarations are meant to define the priority of new dyadic-operators one introduces.
Every dyadic operator has a priority of between 1 and 9 inclusive, and monadic-operators
bind more tightly than any dyadic-operator. One can of course force priorities by writing
sub expressions in parentheses:

INTm=1+ (2 = 3), # 7 #, n= (1 + 2) » 3 # 9 #

The parentheses in Algol 68 are short-hand for BEGIN ... END and indeed, you could
write a clause in parentheses:

INT one ahead = 1 + (INT k; read (k); k)

Hence there is no special construct for sub expressions in parenthesis that one finds in many
other programming languages. This is a consequence of Algol 68’s famed orthogonality.
There are many examples of orthogonality throughout this publication. Parentheses can
be nested to any depth as long as a68g does not run out of stack space.

On the right-hand side of an identity-declaration, widening is allowed, so the following
declaration is valid:

REAL a = 24 * -36
The formula is elaborated first, and the final INT result is widened’ to REAL.

Algol 68 defines two operator-symbols for division of integers. The operator % takes oper-
ands of mode INT and yields a value of mode INT. It has the alternative representation
OVER . The formula 7 % 3 yields 2, and the formula -7 % 3 yields —2. The priority of %
is 7, the same as multiplication.

The modulo operator MOD yields the remainder after integer division. MOD can alternatively
be written as %+ and its priority is 7, the same as division. Algol 68 defines MOD as follows:
let ¢ € Z be the quotient of a € Z and b € Z,b # 0 and r € W the remainder, such that
a=qxb+r;r <|b then a MOD b yields r. Note that the result of MOD always is a non-
negative number. Therefore the quotient ¢ in the definition of MOD is not consistent with the
definition of OVER; for example 7 MOD 3 yields 1 (¢ = 2), but -7 MOD 3 yields 2 (¢ = —3).

Division of REAL numbers is performed by the operator / which takes two REAL operands
and yields a REAL result; it has a priority of 7. For example, the formula 3.0 / 2.0 yields
1.5. As indicated above, the operator / is also defined for INT operands; for example 3 /
2 yields 1.5. There is no REAL version of MOD.

"An operand is in a firm context. In a firm context no widening is allowed, otherwise we could
not decide whether to use integer addition or real addition when we add integer operands.

23

LEARNING ALGOL 68 GENIE

Algol 68 defines an exponentiation operator *+ or its equivalents ~ or UP . Its priority is 8.
The mode of its left operand can be either REAL or INT but its right operand, the expo-
nent, must have mode INT. If both its operands have the mode INT, the yield will have
mode INT and in this case the right operand must not be negative; if the left operand
is real the yield will have mode REAL and the right operand can be negative. Thus the
formula 3 *~x 4 yields 81 and 3.0 *x 4 yields 81.0. Exponentiation takes priority over
division, multiplication and addition or subtraction. For example, the formula 3 » 2 x«
4 yields 48, not 1296. A common pitfall is the formula -x *+ 2 which yields 2?2 in stead
of —(2?). The monadic minus is elaborated first, followed by the exponentiation. This looks
straightforward, but even experienced programmers tend to make this mistake every now
and then. This particular example is not specific to Algol 68, for instance Fortran has the
same peculiarity.

In the discussion above the arithmetic operators +, — and » have operands of identical
modes:

ZxZ—7Z*RxR—=R

In practice, one will frequently use operands of mixed modes. The dyadic-operators +,
-, » and / (but not %) are also defined for mixed modes. That is, any combination of REAL
and INT operands can be used:

ZxR—->ReRXxZ—R

With mixed modes the yield is always REAL. Thus the following formulas are valid and
yield a value of mode REAL:

small real + 1 « 2 * pi

The priority of the mixed-mode operators is unchanged since priority relates to the operator
symbol rather than to the modes of operands or result.

2.7 Mathematical functions

Routines are the subject of chapter 5, however the routines print, read and others like
read int, read real, read bool and read char were already mentioned. Like other
languages, Algol 68 defines various mathematical functions that take real arguments and
yield a real result. A runtime error occurs if either argument or result is out of range.
Multi-precision versions for many of these routines are also pre-defined and are preceded
by either 1ong or 1ong long, for instance 1ong sqgrt or long long 1n. Algol 68 Genie
provides many more functions than standard Algol 68. A complete list of available func-
tions is in section 10.6.1 onwards.

24

INFORMAL INTRODUCTION TO ALGOL 68

2.8 Boolean values

The two values of mode BOOL have denotations TRUE and FALSE . The procedure print
prints T for TRUE, and F for FALSE. Thus:

BOOL t = TRUE, f = FALSE;
print ((t, £));

produces TF on standard output. Boolean values are also read as T and F respectively. a68g
implements procedure read bool that yields a boolean value read from standard input,
SO one can write:

BOOL answer = read bool;

A common monadic-operator for a BOOL operand is NOT , with alternative representa-
tions ~ or ~ . Obviously, if the operand is TRUE, NOT yields FALSE, and if the operand is
FALSE, NOT yields TRUE. The operator ODD , a relict from a distant past, yields TRUE if the
integer operand is an odd number and FALSE if it is even. ABS converts its operand of
mode BOOL and yields an integer result: ABS TRUE yields 1 and ABS FALSE yields 0.

Dyadic-operators with boolean result come in two kinds: those that take operands of
mode BOOL, yielding TRUE or FALSE, and comparison operators {2.10} that take operands
of other modes. Three dyadic-operators are declared in a68g’s standard-prelude which
take operands of mode BOOL. The operator AND , with alternative representation &, yields
TRUE only if both its operands yield TRUE. The priority of AND is 3. The operator OR yields
TRUE if at least one of its operands yields TRUE. The priority of OR is 2. The operator XOR
yields TRUE if exactly one of its operands yields TRUE. It has no alternative representation.
The priority of XOR is 3.

2.9 Characters and text

The mode of a character is CHAR . Algol 68 Genie recognises 1 + max abs char distinct
values of mode CHAR, some of which cannot be written in denotations, for example control
characters. A character is denoted by placing it between quote characters, for instance the
denotation of lower-case ais "a". The quote character """ " is doubled in its denotation.
This convention works because adjacent denotations have no meaning in Algol 68 syntax.
These are example character-denotations:

"M" ."m" ."O" sMe M ."\" s/ PORLE LR Pl "
r

The procedure print will print a character value, and a68g implements procedure read
char that yields a char value read from standard input. Example identity-declarations
for values of mode CHAR are:

25

LEARNING ALGOL 68 GENIE

CHAR a = "A", z = read char, tilde = "~"

The space character is declared as the identifier blank in the standard-prelude. Note
that there also is a predefined identifier space , but this is a routine that only advances
the position in a file upon input or output, without operating on the character that was at
the current position in the file.

For characters that have no denotation, the operator REPR can be used that converts an
integral value into a character value, for instance:

CHAR null = REPR 0, bell = REPR 7

Values of modes INT, REAL, BOOL and CHAR are known as plain values in Algol 68. Chapter
3 describes that plain values can be organised in rows and in this way text is represented
as a row of characters like vectors are rows of real numbers, et cetera. Texts are so common
that every programming language has a text denotation: a quoted string literal. In chap-
ter 3 you will read that in Algol 68 the row of character mode reads [] CHAR. We discuss
[] CHAR briefly here just to introduce the row-of-character-denotation so we can print
texts from our basic Algol 68 programs. The relevant production rules read:

* row of character denotation:
quote {8.2} symbol, string item sequence, quote {8.2} symbol.

* string item:
character;
quote {8.2} symbol, quote {8.2} symbol.

A row-of-character-denotation is conventionally delimited by quote characters:

"row-of-character—-denotation"

One can of course print row-of-character-denotations, so one can let a program print
descriptive texts:

print ("Oops! Too few experiments performed");

In general, a68g will concatenate a source line ending in a backslash with the next line;
this feature can be used in case a denotation must be continued on a next line:

print ("In general, a68g will concatenate \
a source line ending in a backslash with the next line;");

Algol 68 provides operators for character operands. There are two monadic-operators
which involve the mode CHAR. The operator ABS takes a CHAR operand and yields the inte-
ger corresponding to that character. For example, ABS "A" yields 65 (if your platform uses
ASCII encoding). The identifier max abs char is declared in the standard-prelude
and will give you the maximum number in your encoding. Conversely, we can convert an
integer to a character using the monadic-operator REPR ; for instance REPR 65 yields

26

INFORMAL INTRODUCTION TO ALGOL 68

the value "A". REPR accepts an integer in the range 0 to max abs char. REPR is of par-
ticular value in allowing access to control characters. Dyadic-operators + and * involve
(repeated) concatenation of characters and are discussed in chapter 3.

2.10 Comparison operators

Values of modes INT, REAL, BOOL and CHAR can be compared to determine their relative
ordering. Because the widening coercion is not allowed for operands, many extra compar-
ison operators are declared in the standard-prelude that compare values of mixed modes
such as REAL and INT. For example, the boolean-formula:

3 =1.0+ 2
yields TRUE. Similarly:
1 +1=1

yields FALSE. Note that the equals-symbol = can also be written as EQ. Likewise, the
formula:

3500.0 EQ 3.5e3

should?® yields TRUE. The negation of = is /= (not equal):
3 /=2

yields TRUE, and:

TRUE /= TRUE

trivially yields FALSE. Alternative representations of /= are ~= and NE . The priority of both
= and /= is 4. The comparison operators < , >, <= and >= can be used to compare values
of modes INT, REAL and CHAR in the same way as = and /=. Alternative representations
for these operators are LT and GT for < and > and LE and GE for <= and >= respectively.
The priority of all these four comparison operators is 5. Characters are ordered by their
absolute (integer) value. Hence if identifiers a and b are declared as having mode CHAR,
then the formula:

a <b
will yield the same value as the comparison of integers:

ABS a < ABS b

8You should of course be cautious when comparing two REAL values for equality or inequality
because of subtle rounding errors and finite precision of an object of mode REAL. For instance,
1.0 + small real / 2 = 1.0 will yield TRUE.

27

LEARNING ALGOL 68 GENIE

BOOL formulas yielding TRUE or FALSE can of course be combined. For example, to test
whether z lies between 0 and 1 one writes:

Xx > 0 AND x < 1

The priorities of <, > and AND are defined such that parentheses are unnecessary in this
case, but using parenthesis can improve legibility of code. More complicated BOOL for-
mulas can be written:

cycle < 10 AND cmd /= "s" OR read bool

Because the priority of AND is higher than the priority of OR , AND in the above formula is
elaborated first. Code clarity can always be improved using parentheses:

cycle < 10 AND (cmd /= "s" OR read bool)

2.11 Variables and assignation

Up to here we dealt with constants: denotations or values associated with an identi-
fier through an identity-declaration. Practical programs require variables, for instance
identifiers whose value can change. In Algol 68 parlance, a name is a value that refers to
(points to) another value. A name is a value which refers to a location that stores a value.
Obtaining the value from a name is called dereferencing, and changing the value at the
referenced location is called assignation.

You may be tempted to think that a name is implemented as a pointer to a memory loca-
tion, but names are handles rather than pointers. Algol 68 is a garbage-collected language,
meaning that when memory fills a procedure is started to weed out stale names and to
compact memory so new objects can be allocated again. Hence a name can change, but it
will always point to the last value that was assigned to it.

The mode of a name is called a "reference mode", with "reference" having reserved word
REF. For example, a name which refers to a value of mode REAL has mode REF REAL.
Likewise, we can create names with modes:

REF INT . REF REAL +« REF COMPLEX -« REF BOOL
REF can precede any mode, except VOID which is not a mode.

Since names are values, REF can also precede the mode of a name - a pointer variable. Thus
it is possible to construct modes such as:

REF INT . REF REF REAL . REF REF REEF COMPLEX

Although one can write an arbitrary number of REFs, in practice one will not encounter
more than four of them, which specify REF-REF-REF variables.

28

INFORMAL INTRODUCTION TO ALGOL 68

Names are created in Algol 68 using generators. There are two kinds of generator: local
and global. Local generators generate space in the stack, while global generators gen-
erate space in the heap. The two differ in the dynamic lifetime of the name they generate.
We have encountered the concepts of range and reach. Those are static concepts, as the
program text defines the ranges and reaches. However, a value at runtime has a dynamic
lifetime that in Algol 68 cannot always be correlated to a static range since serial-clauses
yield a value, thereby exporting them out of a range. In Algol 68, the dynamic lifetime of
a value is called its scope which is the largest serial-clause throughout which that value
exists.

The scope of a plain value, like 1 or TRUE, and the scope of a global name, is the whole
program. The scope of a local name is the smallest enclosing clause which contains its
generator (which may be hidden by an abbreviated variable-declaration, vide infra). In
general, values have scope and identifiers have range. In Algol 68 it is often, but not al-
ways, possible to check at compile time that names are not applied outside of their scopes.
Since this check is not always possible at compile time, a68g applies dynamic scope check-
ing at runtime.

The generator .OC REAL generates in the stack a local name of mode REF REAL which
can refer to a value of mode REAL. One could write:

read (LOC REAL)

but the created name is anonymous (sic) since it is not associated with an identifier; when
read terminates, the value is marooned since the name is no longer accessible.

Since Algol 68 is highly orthogonal, one can of course associate an identifier with a gen-
erated name by means of an identity-declaration:

REF REAL v = LOC REAL

A brief term for v is REAL variable. The generator 1L.OC REAL generates a name of mode
REF REAL although any unit yielding a value of mode REF REAL would do. After this
identity-declaration, v refers to a local memory location that stores a value of mode
REAL. One can for instance write:

read (v)
When read finishes, v refers to a value assigned to the name through the call to read.

Names can also be declared using a previously declared name on the right-hand side of the
identity-declaration:

REAL w;
REF REAL v = w

The identity-declaration makes v the same name as w, they are each other’s alias. An
assignment to one changes the value of the other as well.

29

LEARNING ALGOL 68 GENIE

Declaring variables by means of an identity-declaration is verbose and yields rather
pedantic code. The abbreviated variable-declaration will let you write:

REAL v
which means exactly the same as:
REF REAL v = LOC REAL
The production rules for a variable-declaration are:
¢ variable declaration:
qualifier option, actual declarer {8.11}, variable definition list.

¢ variable definition list:
identifier {8.6.2}, initialisation option.

* initialisation: becomes {8.2} symbol, strong unit {8.9.5}.

Thus the declaration

REF REAL x = LOC REAL;

can be written as:

LOC REAL x

or, most commonly, since 1.OC is the default:
REAL x

It is important to note that an identity-declaration cannot be mixed with a variable-
declaration, so one cannot write:

REAL a := 0, b =1

An abbreviated declaration needs an actual-declarer followed by the identifier. An
actual-declarer contains information about the length of rows for instance, and is re-
quired when space is generated for an object, for instance in a variable-declaration or
a generator. When no space is generated, formal-declarers are required, for instance
in an identity-declaration. For INT, REAL, BOOL and CHAR the formal-declarer is the
same as the actual-declarer.

Whereas 1.0C will generate local names, HEAP will generate global names. Global names
have a scope as large as the program itself. The generator HEAP REAL generates a global
name of mode REF REAL which can refer to a value of mode REAL, so we could write:

REF REAL v = HEAP REAL

or, abbreviated:

30

INFORMAL INTRODUCTION TO ALGOL 68

HEAP REAL v
a68g allows the symbol NEW as alternative for HEAP, hence we may also write:
REF REAL v = NEW REAL

Local names are allocated in the stack, and global names are allocated in the heap. As ex-
plained earlier, you should not assume that a global name is a constant address in memory.
During execution of an Algol 68 program the heap fills with data, but after some time it will
contain much data that is no longer accessible (temporary data, data from ranges that have
ceased to exist, et cetera). Algol 68 employs a garbage collector that restores heap space
by removing inaccessible data from the heap and compacting it. Heap compaction means
that addresses are not constant, though of course the association between name and value
remains unbroken when data is moved around. Note that even in the stack, data may be
moved, although currently a68g only performs garbage collection of the heap.

An example assignation is:
v := rate x elapsed

An assignation consists of a left-hand-side unit that yields a name, the becomes-symbol,
and a right-hand-side unit yields a value. The right-hand side of an assignation can be
any unit which yields a value whose mode is the derefrenced mode of the name on the
left-hand side. Note that becomes-symbol : = is not an operator. The production rules for
an assignation are:

¢ assignation: soft tertiary {8.9.4}, becomes-symbol, strong-unit.

When an identifier for a name is declared, the name can initialised to refer to a value
immediately:

REF REAL x = LOC REAL := pi, y = LOC REAL := 0
LOC REAL is a unit that here generates a name of mode REF REAL.

The right-hand side of an assignation is in a strong context so coercions as dereferencing
and widening are allowed. Thus the assignation

LOC REAL := 0

results in 0 being widened to 0.0 before being assigned to the name yielded by the genera-
tor.

When we write
X =Yy

the left-hand-side yields a name, which will be implicitly dereferenced to yield a REAL
value.

31

LEARNING ALGOL 68 GENIE

Every construct in Algol 68 yields a value except a declaration, that yields no value. We
said earlier that the value of the left-hand side of an assignation is a name. In fact, the
value of the whole of the assignation is the value of the left-hand side. Because this is a
name, it can be used on the right-hand side of another assignation. For example:

x =y := 0

Since names are themselves values, a name may refer to a name. For example, suppose we
declare:

INT j, k
then the mode of both j and k is REF INT. We could also declare:
REF INT § 2, k 2

sothat § 2 and k 2 both have the mode REF REF INT. Now, according to the definition of
an assignation {8.9.5}, it is allowed to write:

INT 5, k;
REF INT j 2, k 2;
J 2 =]

because the identifier on the left has mode REF REF INT and the identifier on the right
has mode REF INT. The potential pitfall in assignations to REF variables will be clear
after coercions are discussed in a later chapter, but the idea can already be explained here:
Algol 68 can adapt the number of REFs of the source of an assignation to the number of
REF's of the destination, but not vice versa. Hence the assignation in:

INT 7;
REF INT k := j;
k =1

fails since the INT value 1 is not a value for a name of mode REF REF INT. A way around
this will be discussed later - the cast {6.5}, that forces coercions where one needs them.
The above assignation should be written forcing coercion of the destination to mode REF
INT:

REF INT (k) :=1

with the effect that both § and k will be associated with the value 1.

2.12 The value NIL

In Algol 68 there is only one denotation for a name, which is NIL meaning pointing to
no value. Compare this to NULL in C or NIL in Pascal. The mode of NI1. depends on the

32

INFORMAL INTRODUCTION TO ALGOL 68

context. For example, consider:
REF INT k = NIL

then NIL has mode REF INT, in this context. Although NI is a name, it points to no value
and one cannot assign to it.

An assignation to k as declared above would cause a runtime error:

2 k :=0

1
a68g: runtime error: 1l: attempt to access NIL name of mode REF INT
(detected in particular program) .

An application of NIL is in section 5.8 on lists and trees where NIL is used to terminate a
list or (branches of) a tree.

2.13 Assignment combined with an operator

Consider the common assignation where the right-hand side is a simple formula.
a =a+1

Assignations of this kind are so common that the standard-prelude declares operators to
perform them. The above assignation can be written:

a +:= lora PLUSAB 1

which is read as a plus-and-becomes one. The left operand must be a name, and the right
operand may be any unit yielding a value that can be assigned to that name. The yield
of +:=1s the value of the left operand, that is, the name. The operator +: = is defined for
among others a left operand of mode REF INT or REF REAL. The REF INT version of the
operator expects an integer right operand. There are two REF REAL versions for this op-
erator, expecting a right operand of mode INT or REAL respectively. Analoguous operators
are —:=, »:=, /:=, %$:=and %~ : = with obvious meaning. Their alternative representations
are respectively MINUSAB , TIMESAB , DIVAB , OVERAB and MODAB . The operators OVERAB
and MODAB are only declared for operands with modes REF INT and INT. The priority
of all the operators combined with assignation is 1. Note that operators that perform
assignations constitute a formula, not an assignation.

33

LEARNING ALGOL 68 GENIE

34

Stowed and united modes

3.1 Introduction

Stowed is a portmanteau for structured or rowed. We have dealt with plain values, that is,
values with modes INT, REAL, BOOL or CHAR. This chapter introduces compounded modes:
rows and structures. The first compounded mode introduced in this chapter is a row, which
is an ordered set of elements of a same mode, like in any other programming language.
For example, text is a string of characters and many of us use vectors and matrices which
are one - and two dimensional rows respectively. The other compounded mode introduced
in this chapter is a structure, which is an ordered set of objects not necessarily of a same
mode. This chapter introduces the basic modes STRING and COMPLEX, together with the
operations defined for them, and also modes BYTES and BITS will be introduced. Finally
this chapter describes united modes, that can store in one object a value of different modes.

3.2 Rows and row displays

A row consists of a number of elements with a common mode which cannot be vOID. The
mode of a row is written as the mode for each element preceded by square brackets, and is
called row of followed by the name of the mode of each element, such as row of int or row
of bool. As an example we write an identity-declaration for a row:

[] CHAR a = "tabula materna combusta est"

The mode on the left-hand-side is read row of char, which we will write throughout this
publication as [] CHAR. The unit on the right-hand-side of the equals-symbol is in this
case the denotation of a [] CHAR value. Note that we can use a formal-declarer in the
identity-relation since a will just be an alias of "tabula materna combusta est",
and the denotation has implicit bounds 1..27. If you want to declare a row variable, you
need to supply bounds. The declarer must be an actual-declarer. For instance, you
must write:

[1 : 27] CHAR a := "tabula materna combusta est"

35

LEARNING ALGOL 68 GENIE

even though the bounds are implicit in this specific example. The difference with an
identity-declaration is the general situation that when a row is the source of an assig-
nation, also when the source appears in a variable-declaration, the source is copied into
the destination and the bounds of source and destination must match. The bounds must
match since Algol 68 does not regenerate the destination row unless the row is flexible
{3.5}. In an identity-declaration you only make an alias for a row descriptor, which does
not involve copying a row. The maximum number of elements in a row is equal tomax int.

Following is an identity-declaration for a name referring to a row:
REF [] INT i = LOC [1 : read int] INT

which can be abbreviated to a variable-declaration:

[1 : read int] INT 1

There are two things to notice about the first declaration. First, the mode on the left-
hand side is a formal-declarer. It says what the mode of the identifier is, but not what
its bounds are. Second, the generator on the right-hand side is an actual-declarer. It
specifies the bounds of the row to be generated. If the lower-bound is 1 it may be omitted,
so the above declaration could also have been written:

REF [] INT i = LOC J[read int] INT
This declaration can be abbreviated to a variable-declaration:
[read int] INT i

A dynamic name is one which can refer to a row whose bounds are determined at the
time the program is elaborated. This means that one can declare names referring to rows
of the size actually required, rather than some maximum size. The bounds of a row do
not have to start from 1. You are free to choose the value of the lower-bound. In this
identity-declaration:

REF [] INT i at 0 = HEAP [0 : 6] INT
or its equivalent variable-declaration:
HEAP [0 : 6] INT i

the bounds of the row will be [0 : 6]. The minimum value for a lower-bound is —-max
int. The maximum value for an upper-bound is max int. But remember that the maxi-
mum number of elements in a row is also max int, hence the following condition must be
satisfied:

—maz int < upper bound — lower bound + 1 < mazx int

The condition

upper bound — lower bound +1 < 0

36

INFORMAL INTRODUCTION TO ALGOL 68

that occurs when you specify a lower-bound that exceeds the upper-bound, means that
a row is empty; it has no elements. Such a row is called a flat row in Algol 68 jargon.

As said, print prints plain values. Actually, print takes as argument a row of values to
be output, so it is valid to write:

[] INT i;

print ((i, new line))

which will print all elements of i. In case of multi-dimensional rows, elements are printed
in row-order, that is, the rightmost subscript varies most frequently. This is the same
order as C, but not as Fortran that stores in column-order. One can call new line and new
page explicitly to ensure that the next value to be output will start at the beginning of the
next line or page. With respect to rows, read behaves just like print in that a whole row
can be read in one call. A difference between read and print is that the values for read
must be names whereas print also accepts values. Note that if read is used to read a []
CHAR with fixed bounds as in:

REF [] CHAR sf = LOC [80] CHAR;
read (sf)

the number of characters specified by the bounds will be read, new line and new page
being called as needed.

Only [] CHAR has a denotation. Values for other rows are denoted by a construct called

a row-display. The production rule for a row-display reads:

¢ *row display:
begin {8.2} symbol, unit {8.9.5} list proper option, end {8.2} symbol.

A row-display consists of none or two or more units separated by comma-symbols and
enclosed by parentheses (or BEGIN and END). Also [] CHAR has a row-display:

[] CHAR a = ("a", "b", "c", "d")

which means the same as:

[] CHAR a = "abcd"

It is important to note that the units in the row-display could be quite complicated. Any
unit yielding the a value of the mode of an element of the row is permitted. For example,
here is another declaration for a row with mode [] CHAR:

[] CHAR a = (blank, (CHAR z; read (z); z), """")

In this declaration the number of elements is 3. The lower-bound of a row-display
is always 1, so the upper-bound equals the number of elements in the row-display.

37

LEARNING ALGOL 68 GENIE

Since a row-display is only allowed in a strong context, such as the right-hand side of an
identity-declaration or the source of an assignation, its constituent units are also in a
strong context. Thus, the units in a row-display can for instance be widened as in:

[] REAL zero vector = (0, 0, 0)

An empty row-display can be used to yield a flat row, which is a row with no elements.
We could initialise a line like this:

[] CHAR empty line = ()
In this particular case, the denotation for a flat [] CHAR can also be used:
[] CHAR empty line = ""

A row can have a single element but a row-display cannot have a single unit because
such construct would coincide with a closed-clause. This causes ambiguity in the uniting
coercion {6.5.2}. In this case and in a strong context, we write a single unit yielding a value
of correct mode for the element, which is coerced to a row with a single element by the
rowing rowing coercion {6.5.4}. For example:

[] INT z =0
yields a row with one element. A closed-clause could be used instead:
[] INT z = (0)

since a closed-clause is also a unit {8.9.1} but note that coercions move inside clauses
— coercions are not applied to enclosed-clauses but to the terminal units contained
therein. Again, a row-display can only be used in a strong context. It was mentioned
that the context of an operand is firm, so a row-display cannot appear as operand in a
formula. There is a way around this using a cast {6.5}, for example [] INT (1, 2, 3).
The denotation for a [] CHAR is not a row-display and does need a cast {6.5} to be used
as an operand in a formula.

One of the properties of a row is its number of dimensions. All the rows declared so far
have one dimension. The number of dimensions affects the mode. A two-dimensional row
of integers has mode

[, 1 INT
read row row of int, while a 3-dimensional row of reals has mode
[~] REAL

which reads row row row of real. Note that the number of comma-symbols is always one
less than the number of dimensions. In Algol 68, rows with any number of dimensions can
be declared. To cater for more than one dimension, each of the units of a row-display can
also be a row-display. The row-display for a row with mode [,] INT could be:

38

INFORMAL INTRODUCTION TO ALGOL 68

(1, 2, 3),
(4, 5, 6))

For two dimensions, it is convenient to talk of rows and columns. This is an identity-
declaration using the previous row display:

The first row of e is yielded by the row-display (1,2, 3) and the second row is yielded by
(4,5,6). The first column of e is yielded by the row-display (1,4), the second column by
(2,5), and the third column by (3,6). Note that the number of elements in each row is the
same, and the number of elements in each column is also the same, but that the number of
rows and columns do not need to be the same.

The mode of a row element can be any mode, including another row mode. For example:

[][] CHAR days = ("Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday",
"Sunday")

The mode here is read row of row of CHAR. This is another example using integers:
[1[] INT trapezium = (1, (2, 3), (3, 4, 5))

Note that all rows in a [,] MODE object are of a same length while the rows ina [][]
MODE can be of different length.

3.3 Subscripts, slices and trims

Since a row is an ordered set of elements, each element of a row has one index, an integral
value, associated with it for each dimension. These integers increase by 1 from the first to
the last element in each dimension. For example, after the declaration:

[] INT odds = (1, 3, 5)

elements of odds can be accessed as odds [1] yielding 1, odds [2] yielding 3 and odds [3]
yielding 5. The integers 1, 2, 3 are called subscripts or indexers. Selecting elements from
a row is called slicing. A construction as odds[1] is called a slice. Slicing binds more
tightly than any operator, so a slice can be an operand in a formula. The related produc-
tion rules read:

¢ slice:
weak primary {8.9.2}, sub {8.2} symbol, indexer list, bus {8.2} symbol.

39

LEARNING ALGOL 68 GENIE

¢ indexer:
subscript;
trimmer.

* trimmer:
lower index option,
colon {8.2} symbol,
upper index option,
revised lower bound option.

¢ subscript: meek integral unit {8.9.5}.
* lower index: meek integral unit {8.9.5}.
¢ upper index: meek integral unit {8.9.5}.

¢ revised lower bound:
at {8.2} symbol, meek integral unit {8.9.5}.

In the two-dimensional row:

the subscripts for 1 are [1, 1], thosefor3are [1, 3] and the subscripts for 9 are [3,
3]. A slice can also select a sub-row from a row. For example, after declaring v as above,
we can write:

v[il,]

which yields the row denoted by the row-display (1,2,3). Note that the absence of an
indexer implicitly selects all elements for that dimension. Vertical slicing is also possible,
for instance:

vi[,3]

yields (3,6,9). The ability to make an alias for both rows and columns in a two-dimensional
row is a notable property of Algol 68.

Since Algol 68 rows are dynamic, their size is not always fixed at compile-time. The bounds
of a row can be interrogated using the operators LWB for the lower-bound, and UPB for
the upper-bound. The bounds of the first, or only, dimension can be interrogated using
the monadic form of these operators. When the row is multi-dimensional, the bounds are
interrogated using the dyadic form of LWB and UPB: the left operand is the dimension
being interrogated while the right operand is a unit yielding a row. The priority of the
dyadic-operators is 8. For example:

40

INFORMAL INTRODUCTION TO ALGOL 68

[1 : 10, -5 5] INT r;

print (1 LWB r); # prints 1 #
print (1 UPB r); # prints 10 #
print (2 LWB r); # prints -5 #
print (2 UPB r); # prints 5 #

An extension of Algol 68 provided by a68g are the monadic-operator and dyadic-operator
ELEMS that operate on any row. The dyadic version gives the number of elements in the
specified dimension of a row, and the monadic version yields the total number of elements
of a row. For example:

[1 : 10, -5 : 5] INT r;

print (1 ELEMS r); # prints +10 #
print (2 ELEMS r); # prints +11 #
print (ELEMS r) # prints +110 #

The monadic-operator returns the total number of elements while the dyadic-operator
returns the number of elements in the specified dimension, if this is a valid dimension.

Next to ELEMS , a68g offers operator ELEM to provide compatibility with the vintage A1L.GOL68C
compiler. This is an example of a subscript using ELEM:

[] INT first primes = (1, 3, 5, 7, 11);
print (first primes[1l]);
print (1 ELEM first primes); # prints two times +1 #

In a 3-dimensional row, both 2-dimensional and 1-dimensional slices can be produced.
Given the declaration:

[,]

((
(
(9,
(13, 14, 15, 16))

these are the yields of different slices:

1. r[2, 2] yields6

2. r[3,] yields (9,10,11,12)

3. r[, 2 UPB r] yields (4,8,12,16)
4. r[3, 2] yields 10

5. r[2,] yields (5,6,7,8)

6. r[, 3] yields (3,7,11,15)

41

LEARNING ALGOL 68 GENIE

A slice can be used to change the bounds of a row using the @ construction. For example,
after the declaration:

[] CHAR digits = "0123456789"[@Q0]
the bounds of digits are [0 : 9]. Note that @ can also be written AT .

If you slice a name, you want the sliced element to be a name as well, otherwise you could
not assign to an element of the row. The important rule in Algol 68 is that if you slice an
object of mode REF [...] MODE, the yield will be of mode REF MODE. So if you first write:

[1 : products] REAL price;

one can later write:

price[l] := 0;
since slicing a [] REAL variable yields a REAL variable. Again, if you slice an object of
mode [...] MODE, the yield will be of mode MODE. If you slice an object of mode REF [...]

MODE, the yield will be of mode REF MODE. But if you slice an object of mode REF REF [...]
MODE, the yield will still be of mode REF MODE. This coercion is called weak dereferencing
{6.5}.

A trimmer makes a slice select a sub-row from a row. A trimmer reads

first element : last element. The positions first element and last element
are meek-integral-units. If first element is omitted, the lower-bound for that di-
mension is taken, and if 1ast element is omitted, the upper-bound for that dimension
is taken. Omission of both subscripts yields all elements in the specific dimension. Trim-
ming is particularly useful with values of mode [] CHAR. Given the declaration:

[] CHAR quote = "Habent sua fata libelli"™

the trimmers:

quote[: 6]
quote[8 : 10]
quote[l2 : 15]

yield the first three words. The lower-bound of a trimmer is 1 by default, but may be
changed by the use of AT or @. The AT construction is called a revised-lower-bound. For
example, quote[: 6] hasbounds [1 : 6], but quote[: 6 AT 2] quote[: 6Q2] has
bounds [2 : 7]. a68g allows you to replace the colon-symbol : by .. in bounds and
trimmers, which is the Pascal style. Hence in a68g next trimmers are identical:

quote[: 6] and quote[.. 6]
quote[8 : 10] and quote[8 .. 10]
quote[l2 : 15] and quote[l2 .. 15]

42

INFORMAL INTRODUCTION TO ALGOL 68

One can assign values to the elements of a row either individually or collectively. One
can access an individual element of a row by subscripting that element. The rules of the
language state that a subscripted element of a row name is itself a name. In fact, the
elaboration of a slice of a row name creates a new name. Unless you store the new name
by means of an identity-declaration, the new name will cease to exist after the above
assignation has been elaborated.

There are two ways of assigning values collectively. First, this can be done with a row-
display or a [] CHAR denotation. For example:

[1 : 5] INT first primes := (1, 3, 5, 7, 11);

Note that the bounds of both first primes and the row-display are [1 : 5]. In the
assignation of a row, the bounds of the row on the right-hand side must match the
bounds of the row name on the left-hand side. If they differ, a run time error is gener-
ated. The second way of assigning to the elements of a row collectively is to use as the
source of the assignation any unit yielding a row of the correct mode with the required
bounds.

3.4 Operators for rows

Rows of CHAR are so common that dyadic-operators are available implementing concate-
nation and comparison of text. The concatenation operator + is defined for all combinations
of CHAR and [] CHAR. Thus, the formula:

" abc" + "d"

yields the value denoted by "abcd". The operator has a priority of 6, the same as addition;
remember that all operators with the same symbol have the same priority in Algol 68.

Multiplication, meaning repeated concatenation, of values of mode CHAR or [] CHAR is
defined using the operator « . The operator takesa [] CHAR operand and a INT operand,
and the yield has mode [] CHAR. For example, in the declaration:

[] CHAR word = 3 * "ab"

the formula yields "ababab". The formula may also be written with the integer as the
right-hand operand "ab" » 3. In both cases, the operator only makes sense with a posi-
tive integer.

The operators = and /= are also defined for operands of mode [] CHAR. Corresponding
elements must be equal if the = operator is to yield TRUE. Thus:

"a" = n abC"

yields FALSE. Note that the bounds do not have to be the same:

43

LEARNING ALGOL 68 GENIE

([] CHAR a = "Rose"[Q@0], b = "Rose"; a = b)
yields TRUE. The negation of = is /= which test for inequality. So the formula:

"Algol" /= "Algol"

yields FALSE. Alternative representations of /= are ~=, = and NE . The ordering operators
<,>,<=and >= can be used to compare values of mode [] CHAR in the same way as = and
/=. For values of mode [] CHAR, ordering is alphabetic. The formula:

"abcd" > "abCC"

yields TRUE. Two values of mode [] CHAR of different length can be compared. For exam-
ple, both:

"aaa" <= "aaab"

"aaa" <: "aaaa"

yield TRUE. Alternative representations for these operators are LT and GT for < and > and
LE and GE for <= and >= respectively. Because the rowing coercion is not allowed for firm
operands in formulas, the comparison operators are declared in the standard-prelude
for mixed modes CHAR and [] CHAR.

Note that apart from values of mode [] CHAR and the interrogation operators LWB, UPB,
no operators are defined in the Revised Report for rows. a68g, further to ELEMS, defines
pseudo-operators for vectors and matrices (section 3.7) and provides operators to support
linear algebra (section 10.10).

3.5 Flexible names and the mode STRING

In the previous section, we declared row names. The bounds of the row to which the name
can refer are included in the generator. In subsequent assignations, the bounds of the
new row to be assigned must be the same as the bounds given in the generator. In
Algol 68, it is possible to declare names which can refer to a row of any number of elements
(including none) and, at a later time, can refer to row with a different number of elements.
These are called flexible names. Consider this identity-declaration for a flexible name:

REF FLEX [] INT fn = LOC FLEX [1 : 0] INT
or, abbreviated:
FLEX [1 : 0] INT fn

There are several things to note about this declaration:

44

INFORMAL INTRODUCTION TO ALGOL 68

1. the mode of the name is not REF [] INT, but REF FLEX [] INT.FLEX means that
the bounds of the row to which the name can refer can differ from one assignation
to the next.

2. the bounds of the name generated at the time of the declaration are [1 : 0].
Since the upper-bound is less than the lower-bound, the row is said to be flat; it
has no elements at the time of its declaration.

One can now assign rows of integers to fn:

fn = (1, 2, 3, 4)

The bounds of the row to which £n now refers are [1 : 4]. Again, we can write:
fn = (2, 3, 4)

Now the bounds of the row to which fn refers are [1 : 3].One can even write:
fn := 7

in which the right-hand side will be rowed to yield a one-dimensional row with bounds
[1 : 1], and:

fn = ()
giving bounds of [1 : 0].

If a flexible name is sliced, the resulting name is called a transient name because it can only
exist while that flexible name is not deallocated. Therefore transient names have restricted
use, the general rule being that a transient name cannot be stored for later reference. For
example, consider the declaration and assignation:

REF FLEX [] CHAR cl = LOC FLEX [1 : 0] CHAR := "abcdef";
Suppose now we could have the declaration:

REF [] CHAR 1lcl = cl[2 : 4]; # Wrong! #

followed by this assignation:

cl := "z";

Now 1c1 no longer refers to anything meaningful. Thus transient names cannot be stored:
they cannot be linked to identifiers, nor used as parameters for a routine (whether op-
erator or procedure). They can be the destination in an assignation, as in:

STRING s "abcdefghijklmnopgrstuvwxyz";
s[2 : 7] := s[9 : 14]

where the name yielded by s[9 : 14] is immediately dereferenced. So the assignation:

45

LEARNING ALGOL 68 GENIE

s[2 : 7] := "abc"
would produce a run time error.

What has not been made apparent up to now is a problem arising from the ability that we
can have rows of any mode except VOID, so also rows of rows, et cetera. Now consider the
declaration:

FLEX [1 : O][1 : 3] INT semiflex

Because the mode of semiflex is REF FLEX [][] INT, when it is subscripted, the mode
of each element is REF [] INT with bounds [1 : 3]. Clearly, after the declaration,
semiflex has no elements, so how would we know about dimensions of the REF [] INT

sub-row of semiflex? According to the Revised Report a row must have a ghost element,
inaccessible by subscripting, to preserve information on bounds in case no elements are
present. This ghost element prohibits writing:

semiflex := LOC [1 : 4][1 : 4] INT

Algol 68 has been criticised for offering flexible rows, but not a simple way to extend an
existing row with a number of elements while leaving the present elements untouched.
This has to be achieved by declaring a new (larger) flexible row, assigning existing elements
to it, and then copying back:

INT n = read int;
FLEX [n] INT u;

Extend u by one element
[UPB u + 1] INT v;

v[: UPB u] := u;

u = v

after which the row is extended with one yet uninitialised element.

The mode STRING is defined in the standard-prelude as FLEX [1 : 0] CHAR. That is,
the identity-declaration:

REF STRING s = LOC STRING
has exactly the same effect as the declaration:
REF FLEX [] CHAR s = LOC FLEX [1 : 0] CHAR

You will notice that although the mode-indicant STRING appears on both sides of the
identity-declaration for s, in the second declaration the bounds are omitted on the
left-hand side (the mode is a formal-declarer) and kept on the right-hand side (the actual-
declarer). Without getting into grammatical explanations, just accept that if you define a
mode like STRING, whenever it is used on the left-hand side of an identity-declaration

46

INFORMAL INTRODUCTION TO ALGOL 68

the compiler will ignore the bounds inherent in its definition. One can now write:
s := "String"

which gives bounds of [1 : 6] to s. One can slice that row to get a value with mode REF
CHAR which can be used in a formula. Often, where [] CHAR appears, it may be safely
replaced by STRING. This is because it is only names which are flexible so the flexibility of
STRING is only available in REF STRING declarations.

When reading STRING values, reading will not go past the end of the current line!. If the
reading position is already at the end of the line, the row will have no elements. When
reading a STRING, new line must be called explicitly for transput to continue.

Two operators are defined in the standard-prelude which take an operand of mode REF
STRING: PLUSAB , whose left operand has mode REF STRING and whose right operand
has mode STRING or CHAR, and PLUSTO , whose left operand has mode STRING or CHAR
and whose right operand has mode REF STRING. Using the concatenation operator + ,
their actions can be summarised as follows:

Il
v
+
o

1. a PLUSAB b means a

2. a PLUSTO bmeansb := a + b

Thus PLUSAB concatenates b onto the end of a, and PLUSTO concatenates a to the beginning
of b. Their alternative representations are +:= and +=: respectively. For example, if a
refers to "abc" and b refers to "def", after a PLUSAB b, a refers to "abcdef", and after
a PLUSTO b, b refers to "abcdefdef" (assuming the PLUSAB was elaborated first).

3.6 Vectors, matrices and tensors

Algol 68 Genie has extensions to support vectors, matrices and tensors provided they are
represented as rows. Next section shows how to extract a transpose, or a diagonal from a
matrix. Furthermore, a68g offer a basic vector and matrix interface operating on Algol 68
rows of mode:

[] REAL # vector #

[,] REAL # matrix #

[] COMPLEX # complex vector #
[, 1] COMPLEX # complex matrix #

This part of the library is described in section 10.10.

1For details of string terminators see {7.7}.

47

LEARNING ALGOL 68 GENIE

3.7 Torrix extensions

Algol 68 Genie implements pseudo-operators as described by [Torrix 1977]. These are of
particular interest to vector - and matrix algebra. Original Torrix code implements these
symbols as operators on one- and two-dimensional rows of real and complex numbers. The
pseudo-operator implementation offered by a68g is more general as it works on one- and
two-dimensional rows of any mode. The syntactic position of these pseudo-operator expres-
sions is at the same level as a formula, which is a tertiary as described in chapter 8.

Next list compiles the definitions of these pseudo-operators. Note that all yield a descriptor.
This means that the yield of the pseudo-operator refers to the same elements as the row
operated on, only the indices are mapped. In the list below a is a two-dimensional row:

all a1 ce QA1n
ani ago e aAon
a =
Am1 Ap2 ... Amn
u is a one-dimensional row:
ul
U2
u =
Up,

and i, j and k are integers. Next pseudo-operators are available:

1. TRNSP constructs for a matrix, without copying, a descriptor such that:
(TRNSP a) [J, 1] = ali, 7]

for valid i and -.

2. DIAG constructs for a square matrix, without copying, a descriptor such that:
(k DIAG a) [i] = ali, 1 + k]
for valid i and k. The monadic form of DIAG is equivalent to 0 DIAG ...

3. COL constructs, without copying, a descriptor such that:
(k COL u) [i, k] = uli]

for valid i and k. The monadic form of COL is equivalent to 1 COL

4. ROW constructs, without copying, a descriptor such that:
(k ROW u) [k, 1] = uli]

for valid i and k. The monadic form of ROW is equivalent to 1 ROW ...

48

INFORMAL INTRODUCTION TO ALGOL 68

These pseudo-operators yield a new descriptor, but do no copy data. They give a new way
to address the elements of an already existing one - or two dimensional row. For example,
next code sets the diagonal elements of a matrix:

[3, 3] REAL matrix;
DIAG matrix := (1, 1, 1);
print (DIAG matrix)

This will print three ones as the result of the assignation. These pseudo-operators deliv-
ering new descriptors to existing data cannot be coded in standard Algol 68. There is an
analogy with slicing a name. If you apply an above pseudo-operator to an object of mode
[...] MODE, the yield will be of mode [...] MODE, but the number of dimensions will of
course change. If you operate on an object of mode REF [...] MODE, the yield will be of
mode REF [...] MODE. But if you operate on an object of mode REF REF [...] MODE, the
yield will still be of mode REF [...] MODE. This coercion is called weak dereferencing {6.5}.

3.8 A note on brackets

Algol 68 allows square brackets, used when working with rows, to be replaced with paren-
thesis. a68g supports this feature so in stead of:

[3, 3] REAL matrix;
DIAG matrix := (1, 1, 1);
print ((DIAG matrix) [1])

you may write:

(3, 3) REAL matrix;
DIAG matrix := (1, 1, 1);
print ((DIAG matrix) (1))

as long as you close [with] and (with).

3.9 Structured modes

We have seen how a number of individual values can be collected together to form a row
whose mode was expressed as row of mode. The principal characteristic of rows is that all
the elements have the same mode. Often the value of an object cannot be represented by
a value of a single object of a standard mode. Think for instance of a book, that has an
author, a title, year of publication, ISBN, et cetera. A structure is another way of grouping
data elements where the individual parts may be of different modes. In general, access-
ing the elements of a row is determined at run time by the elaboration of a slice. In a
structure, access to the individual parts, called fields, is determined at compile time. In

49

LEARNING ALGOL 68 GENIE

some programming languages, structured modes are called records. The mode constructor
STRUCT is used to create structured modes. This is a identity-declaration involving a
structure:

STRUCT (INT index, STRING title) s = (1, "De bello gallico")
The mode of the structure is:
STRUCT (INT index, STRING title)

The terms index and title are called field selectors and are part of the mode. They are
not actually identifiers, even though the production rule for identifiers applies to them.
Their only use is to provide access to fields in a structured value. The expression to the
right of the equals-symbol is called a structure-display that has this production rule:

¢ *structure-display: strong-collateral-clause.

Like row-displays, structure-displays can only appear in a strong context. A structure-
display has two or more fields; allowing a single-field structure-display would introduce
ambiguity in Algol 68 syntax. In a strong context, a68g can determine which mode is
required and so it can tell whether a row-display or a structure-display has been pro-
vided. We could now declare another such structure:

STRUCT (INT index, STRING title) t = s
and t would have the same value as s.
One can write a structure declaration with different field selectors:

STRUCT (INT count, STRING title) ss =
(1, "Reflexions sur la puissance motrice du feu")

which looks almost exactly like the first structure declaration above, except that the field
selector index has been replaced with count. The structure ss has a different mode from
s because not only must the constituent modes be the same, but the field selectors must
also be identical.

Structure names can be declared:

REF STRUCT (INT index, STRING title) sn =
LOC STRUCT (INT index, STRING title)

Because the field selectors are part of the mode, they appear on both sides of the declara-
tion. The abbreviated form is:

STRUCT (INT index, STRING title) sn

We could then write:

50

INFORMAL INTRODUCTION TO ALGOL 68

sn = S

in the usual way, but not:

sn = SS

The mode of a field can be any mode except VOID. For example, we can declare:
STRUCT (REAL x, REAL vy, REAL z) vector

which can be abbreviated to:

STRUCT (REAL x, y, z) vector

and later on write an assignation:

vector := (0, 0, 0)

where the value 0 would be widened to 0. 0 since the right hand side is in a strong context.
A structure can also contain another structure:

STRUCT (STRING ¢, STRUCT (REAL x, y) point) ori = ("O", (0, 0))

In this case, the inner structure has the field selector point with field selectors x and y. If
size of rows is relevant, as in generators and variable-declarations, the mode of a field
selector is an actual-declarer. Otherwise, as in an identity-declaration, the mode is a
formal-declarer.

The field selectors of a structured mode are used to extract the individual fields of a struc-
ture by means of a selection that has following production rule:

¢ selection: identifier {8.6.2}, of-symbol, secondary {8.9.3}.

For example, given this declaration for the structure s:

STRUCT (INT index, STRING title) s = (1, "De bello gallico")
we can select the first field of s using the selection:

index OF s

The mode of the selection is INT and its value is 1. Note that the construct OF is not an
operator, as is its equivalent in C. The second field of s can be selected using the selection:

title OF s

whose mode is STRING with value "De bello gallico". The field selectors cannot be
used on their own: they can only be used in a selection. A selection binds more tightly
than any operator, so a selection can be used as an operand. However, a slice or a call
{5} binds more tightly than a selection. Consider the formula:

51

LEARNING ALGOL 68 GENIE

[inventory size] STRUCT (INT index, STRING title) inventory;

index OF inventory[l] + 1

then first inventory[1] is elaborated, then the selection, and finally the addition. Some-
times you need to write parenthesis — actually, an enclosed-clause — to ensure correct
elaboration of a construct; consider for instance:

STRUCT ([inventory size] INT indices, STRING title) inventory;

;igdices OF inventory) [1] + 1

Would you have written the last unit as

indices OF inventory[l] + 1

a runtime error would occur since this strictly means
(indices OF (inventory[1l])) + 1

which involves slicing of the value inventory that is not a row in this case, and a68g will
protest:

32 indices OF inventory[1l] + 1

1
a68g: error: 1: REF STRUCT ([] INT indices, STRING title) identifier does
not yield a row or procedure (detected in particular-program) .

The two fields of the structure:
STRUCT (STRING c¢, STRUCT (REAL x, y) point) ori
can be selected by writing:

c OF ori
point OF ori

and their modes are STRING and STRUCT (REAL x, y) respectively. Now the fields of the
inner structure point of ori can be selected by writing:

x OF point OF ori
y OF point OF ori

and both selections have mode REAL. Note that nested selection proceeds from right-to-
left.

If you want to assign to a field, the selection of that field must somehow yield a name.
As with rows, Algol 68 applies the rule that a field selected from a name is itself a name.
Consider for instance the structure name sn declared by:

52

INFORMAL INTRODUCTION TO ALGOL 68

STRUCT (INT index, STRING title) snj;
The mode of sn is:

REF STRUCT (INT index, STRING title)
This means that the mode of the selection:
index OF sn

must be REF INT, and the mode of the selection:
title OF sn

must be REF STRING. That is, the modes of the fields of a structure name get preceded
by REF. Otherwise you would not be able to assign to a single field in a structured object.
The important general rule is that if you select a field with mode MODE from an object with
mode STRUCT (...), then the yield will be of mode MODE as well. If you select a field with
mode MODE from an object with mode REF STRUCT (...), then the yield will be of mode
REF MODE. But if you select a field with mode MODE from an object with mode REF REF
STRUCT (...), then the yield will still be of mode REF MODE. This coercion is called weak
dereferencing {6.5}. Thus, instead of assigning a complete structure using a structure-
display, one can assign values to individual fields. That is, the assignation:

sn := (2, "The republic")
is equivalent to the assignations:

index OF sn := 2;
title OF sn := "The republic"

except that the two units in the structure-display are separated by a comma-symbol
and hence are elaborated collaterally.

Given the declaration:

STRUCT (CHAR mark, STRUCT (REAL x, y) point) ori;

the selection:

point OF ori

has mode REF STRUCT (REAL x, y),and so you could assign directly to it:
point OF ori := (0, 0)

as well as to its fields:

x OF point OF ori
y OF point OF ori

[l
o o
~

53

LEARNING ALGOL 68 GENIE

Structures are read or printed field-by-field from left to right if the modes of every field can
be transput. For example, the following program fragment will print a complex number:

STRUCT (CHAR mark, STRUCT (REAL x, y) point) ori := ("O", (0, 0));
print ((ori, new line))

For details of how this works, see the remarks on straightening {7.10}.

If a structure contains rows, the structure declaration should only include required bounds
if it is an actual-declarer. For example, we could declare:

STRUCT ([] CHAR forename, surname, title)
lecturer = ("Albert", "Einstein", "Dr")

where the mode on the left is a formal-declarer (remember that the mode on the left-hand
side of an identity-declaration is always a formal-declarer). When declaring a name,
an actual-declarer precedes the identifier, and bounds must be included. A suitable
declaration for a name which could refer to lecturer would be:

STRUCT ([7] CHAR forename, [6] CHAR surname, [3] CHAR title)
new lecturer;

but we cannot assign lecturer to it. A better declaration would use STRING :
STRUCT (STRING forename, surname, title) person

in which case we could now write:

person := lecturer

Using field selection, we can write:

title OF person

which would have mode REF STRING. Thus, using field selection, we can assign to the
individual fields of person:

surname OF person := "Schweitzer"

When slicing a field which is a row, it is necessary to remember that slicing binds more
tightly than selecting {8}. Thus the first character of the surname of person would be
accessed by writing:

(surname OF person) [1]

which would have mode REF CHAR. The parentheses ensure that the selection is elabo-
rated before the slicing. Similarly, the first five characters of the forename of person would
be accessed as:

54

INFORMAL INTRODUCTION TO ALGOL 68

(forename OF person) [: 5]
with mode REF [] CHAR.

In the last section, we considered rows in structures. What happens if we have a row each
of whose elements is a structure? If we had declared:

[10] STRUCT (REAL re, im) =z

then the selection re OF z would yield a name with mode REF [] REAL and bounds
[1 : 10].Because z is a name, one can assign to it:
re OF z := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

This extraction of a row of fields from a row of a structured value is called multiple selec-
tion. Multiple selection yields a new descriptor, so one could write aliases for the fields:

[10] COMPL z;
[] REAL x = re OF z, y = im OF z

but note that both x and y are aliases, so any assignation to either one would also affect
z. To avoid this side effect, the rows should be copied by a variable-declaration:

[10] STRUCT (REAL re, im) z
[10] REAL x := re OF z, y := im OF z

after which both x and y contain the actual values of z but have no connection to z anymore.
Selecting the field of a sliced row of structured elements is straightforward. Since the row
is sliced before the field is selected, no parentheses are necessary. Thus the real part of the
third STRUCT (REAL re, im) of z above is given by the expression:

re OF z[3]

3.10 Field selections

Algol 68 was one of the first languages to introduce structured values, and the production
rule for a selection:

¢ selection: identifier {8.6.2}, of-symbol, secondary {8.9.3}.

nowadays appears a bit odd since this syntax evaluates from right-to-left while most other
languages evaluate selections from left-to-right. Compare for instance the Algol 68 con-
struction:

x OF point OF z

55

LEARNING ALGOL 68 GENIE

which in C or Pascal would read?:
z.point.x

a68g offers alternative syntax to the classic Algol 68 selection, called a field-selection,
which is described by the production rule:

¢ field selection:
weak primary {8.9.2}, sub {8.2} symbol, identifier {8.6.2} list, bus {8.2} sym-
bol.

by which one can write above example in a68g as:
z [point, x] or z (point, Xx)

which is elaborated as if you would have written:
x OF point OF z

The field-selection is a primary and is very similar to a call (see 5.3) or a slice. Unlike
a selection, a field-selection cannot perform multiple selection; if it could, then for ex-
ample in a range containing the declaration INT im, [3] COMPL z,the primary z[im]
would be ambiguous.

3.11 Mode declarations

Structure declarations are very common in Algol 68 programs because they are a con-
venient way of grouping disparate data elements, but writing out modes in every declarer
is clumsy and error-prone. Using the mode-declaration, a new mode-indicant can be
declared to indicate a mode. Relevant production rules are:

* mode declaration:
mode {8.2} symbol, mode definition list.

* mode definition:
mode indicant {8.6.1}, equals {8.2} symbol, actual declarer {8.11}.

An indicant can be an upper-case tag as RECORD or VECTOR. a68g accepts a tag that starts
with an upper-case letter, optionally followed by upper-case letters or underscores. Since
spaces are not allowed in an upper-case tag to avoid ambiguity, underscores can be used to
improve legibility. The use of underscores in tags is not allowed in standard Algol 68. For
example, the mode-declaration:

2For convenience we ignore the distinction between the . and —> operators.

56

INFORMAL INTRODUCTION TO ALGOL 68

MODE VECTOR

STRUCT (REAL x, vy, z)

or

MODE VECTOR [1 : 3] REAL

makes VECTOR a synonym for the mode specification on the right-hand side of the equals-
symbol, and new objects using VECTOR can be declared in the ordinary way:

VECTOR vec = (1, 2, 3);

VECTOR vn := vec;

[10] VECTOR va;

MODE TENSOR = STRUCT (VECTOR x, VY, 2Z)

The mode STRING is declared in the standard prelude as:
MODE STRING = FLEX [1 : 0] CHAR

Note that bounds are conveniently ignored when a newly declared indicant is used as
a formal-declarer, for instance in an identity-declaration. Now consider this small
program using matrix objects:

INT n;

MODE MATRIX = [n, n] REAL;
read (n);

MATRIX m;

In above declaration of mode MATRIX, the bounds will be elaborated at the declaration
of any name of mode MATRIX. When MATRIX is used as a formal-declarer, the bounds
are ignored and not evaluated.

Suppose you want a mode which refers to another mode which has not yet been declared
before, and a second mode that refers to the first mode, for example:

MODE A = STRUCT (STRING title, REF B next),
B = STRUCT (STRING name, REF A next)

This can for instance not be written in Pascal or C without using some sort of forward dec-
laration in Pascal or incomplete type in C. In Algol 68, tags like identifiers, indicants or
operators do not have to be declared before they are applied, so one can straightforwardly
declare the two modes as listed above. The syntax of Algol 68 forces that a mode cannot give
rise to (1) an infinitely large object or (2) endless coercion. Using a mode-declaration, you
might be tempted to declare a mode such as:

MODE CIRCULAR = STRUCT (INT i, CIRCULAR c) CO wrong! CO
but this is not allowed since a declaration:

CIRCULAR z;

57

LEARNING ALGOL 68 GENIE

would quickly consume all memory on your system and then complain that memory is
exhausted. Next declaration will also give an infinitely large object:

MODE BINARY = [1 : 2] BINARY
and is therefore not allowed. However, there is nothing wrong with modes as:
MODE LIST = STRUCT (STRING s, REF LIST next)

because only a reference to itself is declared within the structure. Therefore REF shields
a mode definition from its application.

3.12 Complex numbers

The standard-prelude contains the mode-declaration:
MODE COMPL = STRUCT (REAL re, im)

a68g considers the symbols COMPL and COMPLEX as equivalent.
Multi-precision declarations exist in a68g:

MODE LONG COMPL = STRUCT (LONG REAL re, im);
MODE LONG LONG COMPL = STRUCT (LONG LONG REAL re, im)

As with modes INT and REAL, the length of LONG LONG modes can be made arbitrarily
large through the option --precision {9.6.4}. As described in the previous section, the indi-
cant COMPL can be used wherever a mode is required. From the section on field selection,
it is clear that in the declarations:

COMPL z = read complex;
COMPL w := z

the selection:

re OF z

yields a value of mode REAL, while the selection:
re OF w

yields a value of mode REF REAL. The predefined monadic-operator RE takes a COMPL
operand and yields its re field with mode REAL. Likewise, the monadic-operator IM
takes an operand of mode COMPL and yields its im field with mode REAL. Note that the
formula RE w yields a value of mode REAL, not REF REAL, because RE is an operator
whose single operand has mode COMPL. In the above expression, w will be dereferenced
before RE is elaborated. Thus it is not valid to write:

58

INFORMAL INTRODUCTION TO ALGOL 68

RE w := 0
which should be written as:
re OF w := 0

In a strong strong context, a real number will be widened to a complex number. So, for
example, in the following identity-declaration:

COMPL z = pi
z will have the same value as if it had been declared by:
COMPL z = (pi, 0)

Next to using a row-display to denote a complex number, the predefined dyadic-operator
I can be used taking left- and right-operands of any combination of REAL and INT yielding
a COMPL value. It has a priority of 9. For example -1 T 1 yields i — 1. Of course, there is a
declaration for 1 that takes left- and right-operands of any combination of LONG REAL
and LONG INT and yields a LONG COMPL value, and a declaration that takes left- and
right-operands of any combination of LONG LONG REAL and LONG LONG INT and yields
a LONG LONG COMPL value.

Many operators you need to manipulate complex numbers have been declared in the stan-
dard prelude. One can use the monadic-operators + and - which have also been declared
for values of mode coMPL. For a complex number z, CONJ z yields RE z I - IM z. The
operator ARG gives the argument of its operand in the interval < —m, 7]. The monadic-
operator ABS for a complex number is defined as:

OP ABS = (COMPL z) REAL: sgrt (RE z x% 2 + IM z #*x 2)

Note that in the formula RE z «x 2, the operator RE is monadic and so is elaborated first.
The dyadic-operators +, —, » and / are declared for all combinations of complex num-
bers, real numbers and integers, as are the comparison operators = and /=. The dyadic-
operator * + is declared for a left hand operand of mode COMP1 and a right hand operand
of mode INT. The assignation operators TIMESAB , DIVAB , PLUSAB , and MINUSAB all take
a left operand of mode REF COMPL and a right operand of modes INT, REAL or COMPL.
In fact, a68g supplies operator-declarations for all combinations of operand precision,
always resulting in a value with longest precision of either operands. a68g implements
routines for complex arithmetic that circumvent unnecessary overflow when large real or
imaginary values are used. Naive implementation of for example division or ABS can over-
flow while the result is perfectly representable.

Routines are the subject of a later chapter, however we have already introduced mathe-
matical functions for real values. Algol 68 Genie extends the Revised Report requirements
for the standard prelude by also defining mathematical functions for mode COMPLEX. Note
that a runtime error occurs if either argument or result are out of range. Multi-precision
versions of these routines are declared and are preceded by either 1ong or 1long long, for

59

LEARNING ALGOL 68 GENIE

instance long complex sqrt or long long complex 1n. A complete list of available
functions is in section 10.6.2.

3.13 Archaic modes BITS and BYTES

3.13.1 Mode BYTES

Mode BYTES is a compact representation of [] CHAR. It is a structure with an inaccessible
field that stores a row of characters of fixed length in a compact way. A fixed-size object of
mode BYTES may serve particular purposes (such as file names on a particular file system)
but the mode appears of limited use - it was useful in a time when memories were small.

On modern hardware there is no reason to use an object of mode BYTES in stead of a []
CHAR. For reasons of compatibility with old programs, a68 implements modes BYTES and
LONG BYTES. Since these modes are of little practical use they are not extensively treated
here and you are referred to chapter 10 that lists available operators and procedures for
BYTES and LONG BYTES.

3.13.2 Mode BITS

Mode BITS is a compact representation for a [] BOOL. The BOOL values are represented
as single bits. A BITS value is tradionally stored in a machine word. Alternatively a BITS
value can be interpreted as a whole number in W, comparable to an unsigned integer in
C. The typical application of BITS is for masks, or to represent small sets where each bit
is associated with a set member. The advantage of BITS is efficiency; compared to a []
BOOL, a BITS value uses less storage and offers parallel operation on bits for a number of
operators. The number of bits in one machine word is given by the environment enquiry
bits width ; on modern hardware this value on a68g will be either 32 or 64.

It is important to note that in Algol 68 the most significant bit in a BITS value is bit 1
and the least significant bit is bit 32 (or bit 64). Nowadays this seems counter-intuitive,
but imagine reading a [] BOOL from left to right; then the most significant bit is the first
element in the row and therefore must be bit 1. Also, when Algol 68 was designed this
was the way mainframes as the IBM 370 or PDP 10 stored data - the sign bit was bit 0,
the most significant bit was bit 1, and the least significant bit was either bit 31 (32-bit
machines) or bit 35 (36 bit machines). Another language where bit 1 is the most significant
bit,is PL/I .

Sometimes you want to use bits values with more bits than offered by BI1TS. Algol 68 Genie
supports modes LONG BITS and before version 3 also LONG LONG BITS.The range of LONG
LONG BITS is default circa twice the length of LONG BITS but can be made arbitrary large

60

INFORMAL INTRODUCTION TO ALGOL 68

through the option precision {9.6.4}. Below are the respective bits widths for the three
lengths available in a68g.

On platforms that support 64-bit integers and 128-bit floats:

Identifier Value Remarks
bits width 64
long bits width 128

On other platforms:

Identifier Value Remarks
bits width 64
long bits width 116 a68g library
long long bits width 232 a68g library, variable
Algol 68 implements strong widening from a BITS value to a [] BOOL value. Default for-

matting in transput of a value of mode BITS is as a row of bool. A BITS value can also be
denoted in four different ways using denotations written with radices of 2 (binary), 4, 8
(octal) or 16 (hexadecimal). The denotations in next declaration:

BITS a = 2r001011101101,
b = 4r23231,
c = 8rl355,
d l6r2ed

are all equivalent because they all denote the same value. Note that the radix precedes
the letter r and is written in decimal. Recall that numbers can be written with spaces,
or new lines, in the middle of the number; but one cannot put a comment in the middle
of the number. In standard Algol 68, a denotation for LONG BITS must be preceded by
the reserved word LONG and a denotation for LONG LONG BITS must be preceded by the
reserved words LONG LONG. As with integral-denotations and real-denotations, a68g
relaxes the use of prefixes when the context imposes a mode for a denotation, in which
case a denotation of a lesser precision is automatically promoted to a denotation of the
imposed mode.

3.13.3 Operators for BITS

There are many operators for BITS values. These are called bit-wise operators because
their action on each bit is independent of the value of other bits. The monadic-operator
BIN takes an INT operand and yields the equivalent value with mode BITS. The operator
ABS converts a BITS value to its equivalent with mode INT. The NOT operator which you
first met in chapter 2.6 for a Boolean value (section 2.8), takes a BITS operand and yields
a BITS value where every bit in the operand is reversed, corresponding to forming a set
of all members not present in the original set.

61

LEARNING ALGOL 68 GENIE

Three dyadic-operators taking two BITS operands are AND , OR (both of which you also
met in chapter 2.6 for values of mode BOOL) and XOR . All three take two BITS operands
and yield a BITS value. They are bit-wise operators with following action:

Left bit Right bit AND OR XOR

F F F F F
F T F T T
T F F T T
T T T T F

The priority of AND and XOR is 3 and the priority of OR is 2. The AND operator is particularly
useful for either forming a set of common members from two operand sets. OR joins the
two operand sets while XOR forms a set of members present in either operand set, but
not both.

Other dyadic operators involve setting and extracting single bits in a BITS value, which
corresponds to accessing individual set members. It is possible to extract a single bit as a
Boolean value using the operator ELEM . For example, given the declaration BITS set
and supposing we want the third bit (recall that the leftmost bit is bit-1), we could write
the following declaration:

BOOL member 3 = 3 ELEM set

Thus, if the third bit is a binary 1, the declaration will give the value TRUE for bit 3. The
priority of ELEM is 7. Operators SET and CLEAR yield a BITS value with the bit indicated
by the left operand set or cleared in the BITS value yielded by the right operand. The
priority of SET and CLEAR is 7.

Lastly, the dyadic-operators SHL and SHR shift a left hand BITS operand to the left, or
to the right respectively, by the number of bits specified by their right hand INT operand.
When shifting left (SHL), bits shifted beyond the most significant part of the word are lost.
New bits shifted in from the right are always zero. When shifting right (SHR), the reverse
happens. For SHL, if the number of bits to be shifted is negative, the BITS value is shifted
to the right and likewise for SHR. UP and DOWN are synonyms for SHL and SHR respectively.
The priorities of SHL and SHR are both 8.

The operators = and /= are defined for mode BITS with obvious meaning. Noteworthy are
the operators <= and >= that for mode BITS are defined as follows:

s <= tisequivalentto (s OR t) = t
s >= tisequivalenttot <= s

This means that if objects of mode BITS are used to represent sets, that the formula s <=
t tests whether s is a subset of t. Would you interpret BITS as unsigned integral values,
then these operators have their obvious meaning of testing relative magnitude.

62

INFORMAL INTRODUCTION TO ALGOL 68

3.14 United modes

In computer science, a union is a data structure that stores one of several types of data
in one object. Algol 68 implements tagged unions. A tagged union, also called a variant,
variant record, discriminated union, or disjoint union, is a data structure used to hold a
value that could take on several different, but fixed types. Only one of the types can be in
use at any one time, and a tag field explicitly indicates which one is in use. UNION is used to
create a united mode. For example UNION (INT, STRING) can either hold an INT value
or a STRING value. Experience shows that united modes are not used very often in actual
programs. One way of using unions is to save a little memory space when two values
can be mapped onto each other, but this argument hardly holds any more considering the
specifications of modern hardware. A good way to approach unions is:

1. to use them as an abstraction tool, when you want to explicitly express that an object
can be of one of several modes. Transput is a good example of this, for instance:

MODE NUMBER = UNION (INT, REAL,
LONG INT, LONG REAL,
LONG LONG INT, LONG LONG REAL);

or think of a Lisp interpreter in Algol 68 where you could declare for example this:

MODE VALUE = UNION (ATOM, LIST),
ATOM = STRING,
LIST = REF NODE,
NODE = STRUCT (VALUE car, cdr);

Also here, the union serves to provide abstraction.
2. to otherwise use a structure with a field for every mode you need.
Note that in a union, unlike structures, there are no field selectors. This is because a united

mode does not consist of constituent parts. The order of the modes in the union is irrelevant,
they are associative; so next unions are equivalent:

UNION (INT, STRING) ® UNION (STRING, INT)
And above unions are equivalent to:
UNION (STRING, INT, STRING)

since identical modes within a union are absorbed. Like structured modes, united modes
are often declared with the mode declaration. This is a suitable declaration of a united
mode containing the constituent modes STRING and INT:

MODE CARDINAL = UNION (STRING, INT)

We could create another mode NUMERAL in two ways:

63

LEARNING ALGOL 68 GENIE

MODE NUMERAL = UNION (CARDINAL, REAL)

or the equivalent phrasing:

MODE NUMERAL = UNION (STRING, INT, REAL)

Using an above declaration for CARDINAL, we could declare:
CARDINAL u = (roman mood | "MMVIII" | 2008)

In this identity-declaration, the mode yielded by the right hand side is either INT or
STRING, but the mode required is UNION (STRING, INT). The value on the right-hand
side is coerced to the required mode by a coercion called uniting which is available in firm
and strong contexts. This means that operators which accept operands with united modes
will also accept operands whose modes are any of the constituent modes. We will return
to this in a further section. The united mode CARDINAL is a mode whose values either have
mode INT or mode STRING. Any value of a united mode actually has a mode which is one of
the constituent modes of the union. So there are no new values for a united mode. Because
a united mode does not introduce new values, there are no denotations for united modes.
identifier u as declared above identifies a value which is either an INT or a STRING. Later
you will read how to determine the mode of the value currently contained in a united object
using a conformity-clause. Any mode and also VOID can be a constituent mode of a united
mode. Consider this united mode containing a procedure and vOID:

MODE OPTIONAL = UNION (PROC (REAL) REAL, VOID)
and a declaration applying it:
OPTIONAL function := EMPTY

indicating that function is initially undefined as it holds no PROC (REAL) REAL value. A
limitation on constituent modes in a united mode is that none of the constituent modes may
be firmly related (see section 5.6) and a united mode cannot appear in its own declaration.
The following declaration is wrong because a value of one of the constituent modes can
be deprocedured in a firm context to yield a value of the united mode:

MODE WRONG = UNION (PROC WRONG, INT)

Names for values with united modes are declared in exactly the same way as before. Look
at this declaration for a name using a local generator:

REF UNION (BOOL, INT) un = LOC UNION (BOOL, INT)
The abbreviated declaration reads:
UNION (BOOL, INT) un

Hence objects of united modes can be declared in the same way as other objects.

64

Program structure

4.1 Introduction

This chapter describes the structure of an Algol 68 program (the particular-program).
Formally, a program is an enclosed-clause of mode vOID, meaning that if this enclosed-
clause yields for instance an integral value, that this value is discarded. There are seven
types of enclosed-clause.

1. The simplest is the closed-clause which consists of a serial-clause enclosed in
parentheses (or BEGIN and END).

2. Collateral-clauses are generally used as row-displays or structure displays: there
must be at least two units. The units are elaborated collaterally. This means that
the order is undefined and may well be in parallel.

3. A parallel-clause {4.12} is a collateral-clause preceded by PAR. The constituent
units are executed in parallel.

The loop-clause {4.9} elaborates code iteratively.
The conditional-clause {4.3} elaborates code depending on a boolean value.

The case-clause {4.6} elaborates code depending on an integral value.

NS ok

The conformity-clause {4.7} elaborates codedepending on the mode of a united
value.

4.2 The closed clause

Algol 68 programs are free format: the meaning of a program is independent of its layout.
This seems trivial but Algol 68 was presented at a time when languages as Fortran de-
signed special meaning to characters at certain positions in a line. For example, you could
write a complete though trivial Algol 68 program like this:

(print ("Hello world!"M™))

65

LEARNING ALGOL 68 GENIE

Note that the pair BEGIN and END can always be replaced by the pair (and). This is
another simple example program:

BEGIN INT m = read int;
INT n = read int;
print (("sum is", m + n))
END

Note that there is no semicolon-symbol before END. Unlike C where a semicolon-symbol
is a statement terminator, in Algol 68 it is a phrase separator!.

Examples of units are formulas, assignations etcetera. Chapter 8 will explain units and
coercions in detail. Units and declarations are separated by the go-on-symbol, which
is a semicolon-symbol. A sequence of at least one unit and if needed declarations,
separated by semicolon-symbols, is called a serial-clause. A serial-clause yields the
value of its last unit. Since a serial-clause yields a value but a declaration never does,
a serial-clause cannot end in a declaration. In Algol 68, as in other block oriented lan-
guages as C and Pascal, the validity of declarations is limited to the "block" that contains
them. Algol 68 uses the terms range and reach to explain the validity of declarations:

* arange is a validity area for declarations, for instance a serial-clause. A declara-
tion in a range is not valid in its parent ranges, but it is valid in embedded ranges.

* areach is a range excluding its embedded ranges. In Algol 68, looking for the decla-
ration of a symbol (identifier, mode-indicant, operator et cetera) means searching
inside-out through nested reaches. This is the same in languages as C or Pascal.

Declarations in a serial-clause have validity only in that serial-clause and in its em-
bedded serial-clauses. The construct BEGIN serial-clause END contains a serial-
clause and thus holds a range which is illustrated by this diagram:

BEGIN

END

Similar diagrams will be used in this publication to illustrate the hierarchy of ranges
of more complicated constructs. The construct BEGIN serial-clause END is called a
closed-clause in Algol 68.

The production rule for the closed-clause therefore reads:

* closed clause:
begin {8.2} symbol, serial clause {8.8}, end {8.2} symbol.

13689 is tolerant with respect to using the semicolon-symbol as phrase terminator. You will
get a warning, but superfluous semicolon-symbols are ignored.

66

INFORMAL INTRODUCTION TO ALGOL 68

4.3 The conditional clause

The conditional-clause lets a program elaborate code depending on a BOOL value. This
value must be yielded by a special serial-clause that cannot have labels: an enquiry-
clause. This is a simple example of a conditional-clause:

IF REAL x = read real; x > 0
THEN print ((ln (x), new line))
ELSE stop

FI

If the BOOL enquiry-clause yields TRUE, the serial-clause following THEN is elaborated,
otherwise the serial-clause following ELSE is elaborated. The symbol FI following the
ELSE serial-clause is a closing parenthesis to IF. The ELSE part of a conditional-clause
can be omitted. When the ELSE part is omitted, and the conditional-clause is expected
to yield a value, an undefined value of the required mode will be yielded if the enquiry-
clause yields FALSE. Actually, if the ELSE part is omitted then its serial-clause is re-
garded as consisting of the single unit SK1P. The use of IF with matching FI eliminates
the dangling-else problem: to what IF does a nested ELSE belong in nested conditional-
clauses when ELSE is optional? In for example Pascal and C such matters are decided
by writing extra rules next to the syntax stating that any ELSE is related to the closest
preceding IF. In Algol 68 such extra rules are not necessary. The production rules for the
conditional-clause read:

*conditional clause: choice using boolean clause.

* choice using boolean clause:
if {8.2} symbol, meek boolean enquiry clause {8.8},
then {8.2} symbol, serial clause {8.8},
elif part option,
else part option,
fi {8.2} symbol.

elif part:
elif {8.2} symbol, meek boolean enquiry clause {8.8},
then {8.2} symbol, serial clause {8.8},
elif part option.

¢ else part:
else {8.2} symbol, serial clause {8.8}.

The enquiry-clause is in a meek context, meaning that only deproceduring and derefer-
encing {6.5} will be applied to the terminal unit of the enquiry-clause. For instance, if
the terminal unit would be read bool, deproceduring will take place to make the routine
yield a boolean value. The enquiry-clause on line 1 in above-mentioned example reads:

67

LEARNING ALGOL 68 GENIE

REAL x = read real;
x > 0

which obviously ends in a unit yielding a value of mode BOOL.

An enquiry-clause and a serial-clause may consist of at least one unit and possibly
declarations. However, in a conditional-clause an enquiry-clause must end with a
unit yielding BOOL. The hierarchy of ranges in conditional-clauses is illustrated by:

IF

THEN ELSE

FI

The range of any declaration in an enquiry-clause extends to the serial-clauses follow-
ing THEN and ELSE. All declarations in the conditional-clause cease to exist when FI
is encountered. This diagram also explains why an enquiry-clause cannot have labels:
these labels would be visible from within constituent parts of the conditional-clause,
and would let you jump back into the if-part. Note that this design of the conditional-
clause allows you to write any declaration in the smallest range required, thus shielding
them from other parts of the program that have no need for these declarations. This
allows for a safe and clean programming style.

The conditional-clause can be written wherever a unit is permitted, so:

IF INT a = read int;

a >0
THEN print ((a, " is positive"))
ELSE print ((a, " is negative"))
FI

can also be written as:

INT a = read int;
print ((a, " is ", IF a >= 0 THEN "posi" ELSE "nega" FI, "tive"))

The value of each of the serial-clauses following THEN and ELSE in this case is [] CHAR,
a row-of-character. The conditional-clause can appear as an operand in a formula.
A short form for the conditional-clause is often used for this: IF and FI are replaced
by (and) respectively, and THEN and ELSE are both replaced by a bar |. For example,
assuming a declaration for x:

REAL abs = (x < 0.0 | - x | x)

68

INFORMAL INTRODUCTION TO ALGOL 68

which is equivalent to:

REAL abs = IF x < 0.0 THEN - x ELSE x FI

If you omit the else-part, Algol 68 Genie assumes that you wrote ELSE SKIP. Forinstance,

n:

REAL quotient = (y /= 0.

the quotient will have an undefined value in case y = 0. In such case, SKIP will yield an
undefined value of the mode yielded by the THEN serial-clause, which is forced by the
formal-declarer REAL. This is an example of balancing {8}. Formally, SKIP is an algo-
rithm that performs no action, completes in finite time, and yields some value of the mode
required by the context. You will note that SKIP can be useful when you would want to

yield some undefined value.

Since the enquiry-clause is a special form of serial-clause, it can have any number of
phrases before the THEN symbol. For example:

IF INT measurements;
read (measurements);
measurements < 10

THEN

FI

Conditional-clauses can be nested:

BOOL leap year =
IF year MOD 400 = 0
THEN TRUE
ELSE IF year MOD 4 = 0

THEN year MOD 100 /= O

ELSE FALSE
FI
FI

A construction ELSE IF

BOOL leap year =
IF year MOD 400 = 0
THEN TRUE
ELIF year MOD 4 = 0
THEN year MOD 100 /= 0
ELSE FALSE
FI

FI can be contracted to ELIF ... which saves indentation:

Note that there is no contraction of THEN IF since that would leave undefined whether an
eventual else part would be related to the first condition or to the second. In the abbreviated

69

LEARNING ALGOL 68 GENIE

form | : can be used instead of ELIF. For example, the above identity-declaration for
leap year could be written:

BOOL leap year =
(year MOD 400 = 0
| year MOD 100 /

| TRUE |: year MOD 4 = 0
0 | FALSE)

but this is generally not very legible. For better legibility it is recommended to alternate
the long and brief form of the conditional-clause, for instance:

BOOL leap year =
IF year MOD 400 = 0

THEN TRUE
ELSE (year MOD 4 = 0 | year MOD 100 /= 0 | FALSE)
FI

4.4 Pseudo operators

Sometimes it is useful to include a conditional-clause in the IF part of a conditional-
clause. In other words, a BOOL enquiry-clause can be a conditional-clause yielding a
value of mode BOOL. This is an example with a and b declared with mode BOOL :

IF (a | b | TRUE)
THEN

ELSE

FI

As was mentioned in chapter 2.6, the operands of an operator are all elaborated before
the operator is elaborated. Sometimes it is useful to refrain from further elaboration when
the result of a formula can be determined from the value of a single operand. To that
end a68g implements the pseudo-operator THEF (with synonyms ANDF and ANDTH) which
although it looks like an operator, elaborates its right operand only if its left operand
yields TRUE. Compare them with the operator AND . The unit p THEF g is equivalent to:

IF p THEN g ELSE FALSE FI
An example is the earlier used definition of 1eap year:

BOOL leap year =
IF year MOD 400 = 0
THEN TRUE
ELSE year MOD 4 = 0
THEF year MOD 100 /= 0
FI

70

INFORMAL INTRODUCTION TO ALGOL 68

There is another pseudo-operator ELSF (with synonyms ORF and OREL) which is similar to
the operator OR except that its right operand is only elaborated if its left operand yields
FALSE. The unit p ELSF g is equivalent to:

IF p THEN TRUE ELSE g FI

These pseudo-operators are an a68g extension. Neither THEF nor ELSF are part of Algol 68.
Compare them with s& and | | in C.

4.5 Identity relations

In the chapter on formulas we did not address operations on names. The reason for this
is that Algol 68 only implements a test on name equality. One can check whether two
names are the same, and if they are, they refer to the same value when the names are
not NIL . One cannot manipulate addresses as one can in for instance C. Algol 68 does
not prescribe how a name refers to a value, though in practice names involve memory
addresses. You have already seen that a name generated by L.OC is different from a name
generated by HEAP since the latter can be modified by the garbage collector. In Algol 68
names are compared through a special construct, the identity-relation. For example:

u =: v

yields TRUE if u is the same name as v or FALSE otherwise, and:

yields TRUE if u is not the same name as v or FALSE otherwise. The symbols :=: and : /=:
can be written as IS and ISNT respectively.

A pitfall in an identity-relation is that names must be compared at the proper level of
dereferencing. The following artificial program demonstrates the potential difficulty:

BEGIN REF INT i := LOC INT, j := LOC INT, k := LOC INT;
i := (read bool | 3 | k);
print (i IS 3j)

END

Here the identity-relation i IS j always yields FALSE because i, j and k are different
variables and thus are different names. What you actually want is to compare the values
of these pointer variables, which in this case are themselves names. We intend to compare
REF INT values, but actually test REF REF INT value equality. To compare the names
that both ¢ and j refer to, you should place at least one side in a cast {6.5}:

REF INT (i) IS 7

71

LEARNING ALGOL 68 GENIE

This will ensure that the right-hand side (in this case) is dereferenced to yield a name of
the same mode as the left-hand side.

The identity-relation is subject to balancing, a subject treated at length in chapter 8.
The compiler places one side of the relation in a soft context and the other side in a strong
context in such way that the modes on both sides are unique and matching. Balancing is
certainly needed in the most common application of the identity-relation: comparison to
NIL.Balancing makes NIL take the mode of the other name in the identity-relation. This
however implies that the identity-relation NI1, IS NIL gives a compile-time error since
no unique mode can be established for the names:

$ a68g -p "NIL IS NIL"
1 (print ((NIL IS NIL)))
1
a68g: error: 1l: construct has no unique mode (detected in closed-clause
starting at " (" in this line).

4.6 The case clause

Often choices can be enumerated. Such situation can for example be handled by the follow-
ing conditional-clause:

IF n =1
THEN unit 1
ELIF n = 2
THEN unit 2
ELIF n = 3
THEN unit 3
ELSE unit 4
FI

This type of enumerated choice can be expressed more concisely using the case-clause in
which the BOOL enquiry-clause is replaced by an INT enquiry-clause, for example:

CASE n

IN unit 1, unit 2, unit 3
OUT unit 4

ESAC

which could be abbreviated as:
(n | unit 1, unit 2, unit 3 | unit 4)

The case-clause can also be used to code tables. For instance, calendar computations give
examples of case-clauses:

72

INFORMAL INTRODUCTION TO ALGOL 68

INT days =
CASE month
IN 31,
IF IF year MOD 400 = 0
THEN TRUE
ELSE (year MOD 4 = 0 | year MOD 100 /= 0 | FALSE)
FI
THEN 29
ELSE 28
FI,
31, 30, 31, 30, 31, 31, 30, 31, 30, 31
ESAC

Note that units in the IN part are separated by comma-symbols. If you want more
than one phrase for each unit, you must make that unit an enclosed-clause. If the INT
enquiry-clause yields 1, unit 1 is elaborated; if it yields 2, unit 2 is elaborated and
so on. If the value yielded is negative or zero, or exceeds the number of units in the IN
part, the OUT part is elaborated. The OUT part is a serial-clause. Like the conditional-
clause, if you omit the out-part, Algol 68 Genie assumes that you wrote oUT SKIP. The
production rules for the case-clause read:

¢ *case clause: choice using integral clause.

* choice using integral clause:
case {8.2} symbol, meek integral enquiry clause {8.8},
in {8.2} symbol, unit {8.9.5} list proper,
ouse part option,
out part option
esac {8.2} symbol.

* ouse part:
ouse {8.2} symbol, meek integral enquiry clause {8.8},
in {8.2} symbol, unit {8.9.5} list proper,
ouse part option.

¢ out part:
out {8.2} symbol, serial clause {8.8}.

The case-clause allows only for simple enumeration. Other languages offer constructs,
like the switch statement in C, that allow for more complex enumeration schemes. In
Algol 68, such complex schemes must be handled by a nested conditional-clause. The
designers of Algol 68 apparently disliked syntactic sugar.

The hierarchy of ranges in case-clauses is illustrated by:

73

LEARNING ALGOL 68 GENIE

CASE

IN ouT

ESAC

Sometimes the out-part consists of another case-clause. Just as with ELIF in a conditional-
clause, OUT CASE ... ESAC ESAC can be replaced by OUSE ... ESAC.

4.7 The conformity clause

We will now discuss how a value can be extracted from a united mode since its con-
stituent mode cannot be determined at compile-time. There is no de-uniting coercion in
Algol 68 and the constituent mode of the value must be determined using a variant of
the case-clause {4.6} which is called a conformity-clause. The production rules for the
conformity-clause read:

¢ *conformity clause: choice using UNITED {15,.5} clause.

¢ choice using UNITED {15,.5} clause:
case {8.2} symbol, meek UNITED {15,.5} enquiry clause {8.8},
in {8.2} symbol, specified unit list,
conformity ouse part option,
out part option,
esac {8.2} symbol.

¢ specified unit:
open {8.2} symbol, formal declarer {8.11}, identifier {8.6.2} option, close
{8.2} symbol, colon {8.2} symbol, unit {8.9.5}.
open {8.2} symbol, void {8.2} symbol, close {8.2} symbol, colon {8.2} symbol,
unit {8.9.5}.

¢ conformity ouse part:
ouse {8.2} symbol, meek UNITED {15,.5} enquiry clause {8.8},
in {8.2} symbol, specified unit list,
conformity ouse part option.

¢ out part:
out {8.2} symbol, serial clause {8.8}.

For our discussion, we return to the declaration:

74

INFORMAL INTRODUCTION TO ALGOL 68

MODE CARDINAL = UNION (STRING, INT);
CARDINAL u = (roman mood | "MMVIII" | 2008)

The constituent mode of u can be determined by:

CASE u

IN (INT): print ("decimal mood"),
(STRING) : print ("roman mood")

ESAC

If the constituent mode of u is INT, the first case will be selected. Note that the mode
selector is enclosed in parentheses and followed by a colon-symbol. Above example could
also have been written as:

CASE u

IN (STRING) : print ("roman mood")
OUT print ("decimal mood")

ESAC

Usually, when we determine the mode of an united object with a conformity-clause, we
also want to extract the value to operate on it. This can be done in this way:

CASE u

IN (INT i): print (("decimal mood: ", 1i)),
(STRING s): print (("roman mood: ", s))

ESAC

In this example, the declarer and identifier, which is called the specifier, act as the left-
hand side of an identity-declaration. The value can be used, but not changed as it is
declared using an identity declaration, in the unit following the semicolon-symbol. A
specifier can also select a united subset of a united mode. For example:

MODE ICS = UNION (INT, CHAR, STRING);

Now define multiplication with an INT:

OP x = (ICS a, INT b) ICS:
CASE a
IN (UNION (STRING, CHAR) ic):
(ic | (CHAR c¢): c * b, (STRING s): s * Db),
(INT n): n » b
ESAC

Note that conformity-clauses do not usually have an OUT clause. One usually defines a
specific action by a conformity-clause on all possible modes at once.

75

LEARNING ALGOL 68 GENIE

4.8 Balancing

Enclosed-clauses such as conditional-clauses, case-clauses and conformity-clauses
yield one of a number of units, and it is quite possible for the units to yield values of
different modes. The principle of balancing allows the context of all these units, except
one, to be promoted to strong, whatever the context of the enclosed-clause. The one that
is not promoted to strong remains in the imposed context of the clause, is of course the one
mode to which the promoted units can be strongly coerced. Balancing is also invoked for
identity-relations {4.5}. Consider for example the formula:

1+ (a>0111 0.0)

where the context of the conditional-clause is firm hence widening is not allowed. With-
out balancing, the conditional-clause could yield a REAL or an INT. In this example, the
principle of balancing would promote the context of the INT to strong and widen it to REAL.
In a balanced clause, one of the yielded units remains in the context of the clause and all
the others are in a strong context, irrespective of the actual context of the clause.

4.9 The loop clause

Often you need to iterate a group of actions a number of times. One mechanism for iteration
in Algol 68 is the loop-clause:

TO n # We iterate n times #
DO # serial-clause to be iterated #

0D

Above construct is just one form of the loop-clause. Unlike a conditional-clause or case-
clause, a loop-clause yields no value. The production rules for the loop-clause are:

* loop clause:
for part option,
from part option,
by part option,
to part option,
while part option,
do part.

¢ for part:
for {8.2} symbol, identifier {8.6.2}.

76

INFORMAL INTRODUCTION TO ALGOL 68

¢ from part:
from {8.2} symbol, meek integral unit {8.9.5}.

* by part:
by {8.2} symbol, meek integral unit {8.9.5}.

¢ to part:
to {8.2} symbol, meek integral unit {8.9.5};
downto {8.2} symbol, meek integral unit {8.9.5}.

¢ while part:
while {8.2} symbol, meek boolean enquiry clause {8.8}.

* do part:
do {8.2} symbol, serial clause {8.8}, od {8.2} symbol;
do {8.2} symbol, serial clause {8.8} option, until part, od {8.2} symbol.

¢ until part:
until {8.2} symbol, meek boolean enquiry clause {8.8}.

Due to the many optional parts, the loop-clause has been compared by some to a Swiss
army knife. The loop-clause can have a loop identifier counting the iterations, as is
shown in the following example:

FOR 1 TO 10
DO print ((i, new line))
oD

Here i is a new INT identifier, a counting constant, that can be considered as implicitly
declared by the for-part. Note that the mode of a loop identifier is not REF INT so one
cannot perform an assignation to it. Above example will print the numbers 1 to 10. The
range of a loop identifier is the loop-clause that defines it, except the from-part, by-
part and to-part; since the units of the latter constructs are determined before iteration
is started, they cannot depend on the value of the loop identifier. In a to-part, the unit
following TO can be any unit yielding an integer. It is possible to modify the initial value
of the loop identifier using a from-part, for example:

FOR n FROM -10 TO 10
DO print ((n, blank))
oD

This prints the numbers from —10 to +10 on standard output. The unit after FROM can be
any unit which yields a value of mode INT. When the from-part is omitted, the default
initial value of the loop identifier is 1. The value of the loop identifier is by default
incremented by 1. The increment can be changed using a by-part. The unit after BY can
be any unit which yields a value of mode INT. For example, to print the even numbers up
to and including 10, you could write:

77

LEARNING ALGOL 68 GENIE

FOR n FROM 0 BY 2 TO 10
DO print ((n, new line))
oD

Compare this to its C equivalent:
{int n; for (n = 0; n <= 10; n += 2) {printf ("%d\n", n);}}

Next example demonstrates a loop-clause without a counting constant:

BEGIN STRING u := "Barbershop";
TO UPB u + 1
DO print ((u, new line));
CHAR v = u[UPB u]; STRING w = u[l : UPB u - 1];
ul2 : UPB u] := w;
ull] := v
OD
END

which produces:

$ a68g barbershop.a68
Barbershop
pBarbersho
opBarbersh
hopBarbers
shopBarber
rshopBarbe
ershopBarb
bershopBar
rbershopBa
arbershopB
Barbershop

The increment specified by a by-part can be negative, in which case the loop will count
backwards. a68g offers the reserved word DOWNTO as an alternative to TO. DOWNTO origi-
nally is an ALGOL68C extension. DOWNTO will decrement, whereas TO will increment, the
loop identifier by the amount stated by the (implicit) by-part; BY n DOWNTO m is equiv-
alent to BY —-n TO m. For example:

FOR k FROM 10 DOWNTO 1
DO print (k)
oD

If you omit a to-part, the loop will iterate indefinitely. There are of course applications
for loops that iterate until a condition is met that does not depend on the loop identifier
alone. Such condition can be programmed using the while-part of a loop. For example:

78

INFORMAL INTRODUCTION TO ALGOL 68

WHILE INT int;
read (int);
int > 0

DO print (int)

oD

In this example, no loop counter is needed and so the FOR part is omitted. WHILE is followed
by an enquiry-clause yielding a BOOL value. An integer is read each time the loop is elab-
orated until a non-positive integer is read. The range of any declarations in the enquiry-
clause extends to the DO ... OD loop. The while-part provides for a pre-checked loop.
There are those who regret that Algol 68’s definition did not include a post-checked loop.
Apparently it was believed that a post-checked loop was not really necessary since it can
be programmed as:

WHILE do what has to be done;
condition

DO SKIP

oD

and as has been remarked before, the designers of Algol 68 apparently disliked syntactic
sugar. Many think that the DO SKIP OD solution is not elegant. To accommodate this,
a68g extends Algol 68 by offering a post-checked loop by allowing an optional until-part
as final part of the DO ... OD construction:

DO serial-clause-option
UNTIL boolean-enquiry-clause
OD

A trivial example of a post-checked loop is:

DO UNTIL read char = "."
oD

which will skip characters from standard input until a " . " is encountered which will dis-
appear from the input as well.

The hierarchy of ranges in the loop-clause is illustrated by:

79

LEARNING ALGOL 68 GENIE

1 FOR FROM BY TO
2 WHILE
3 DO
4 UNTIL
OD

Again, note that the loop identifier is unknown in the from-part, by-part and to-part.
Since the units of the latter constructs are determined before iteration is started, they
cannot depend on the value of the loop identifier.

4.10 Order of evaluation

Take care in assignations that the effect of code does not depend on assumptions on the
order of elaboration. The elaboration of left-hand-side destinations and right-hand-side
sources is performed collaterally. After evaluating destinations and sources, assignation
takes places from right-to-left. Since an assignation yields a value (specifically, a name),
it can be used as an operand in a formula. However, an assignation is a unit, and a
unit cannot be a direct operand (see chapter 8). The assignation must be packed in an
enclosed-clause using parentheses, or BEGIN and END; for example:

2 %« (a :=a + 1)

In Algol 68, the becomes-symbol := is not an operator, and an assignation cannot be
a direct operand. The following rephrasing of above example applies +:= which is an
operator:

Parentheses are still needed here as multiplication takes priority over +:=.
Now let us return to order of evaluation. In:
INT side sg = a %% 2 + b *% 2

the order of elaboration is that both terms are elaborated collaterally. Hence do not write
code that yields a result that depends on the order of evaluation, for instance:

INT poly = a ** 2 + (a +:= 1)

80

INFORMAL INTRODUCTION TO ALGOL 68

which would yield either a® 4 a + 1 or a® +2a + 1 or a® + 3a + 2 at the compiler’s discretion?.
Write this strictly as:

a +:=1; INT poly = a x (a + 1)

4.11 Comments and pragmats

It is of course good practice to write comments in source code. Comments can be put
almost anywhere, but not in the middle of symbols. A comment is ignored by a68g. A
comment is delimited by one of the following pairs:

COMMENT ... COMMENT
CO ... CO
... #

where the ... represent the actual comment. If one starts a comment with COMMENT then
you must also finish it with COMMENT, and likewise for the other comment-symbols. This
is an example comment describing the purpose of a program:

COMMENT
The determinant of the square matrix "a’ of order ’'n’ by the
method of Crout with row interchanges: ’"a’ is replaced by its
triangular decomposition, 1 * u, with all ulk, k] = 1.
The vector 'p’ gives as output the pivotal row indices; the k-th
pivot is chosen in the k-th column of T such that
ABS 1[i, k] / row norm is maximal

COMMENT

It is of course recommended to indicate limitations of a piece of code:

CO This only works for powers of two! CO

It is also common practice to "comment out” pieces of source code, as in:

COMMENT
print (i); # trivial check #
COMMENT

This is an example of nested comments. Since in Algol 68 the symbol starting a com-

2This formula could fail completely if the assignation would be incomplete while multiplication
started with an indeterminate value a. In C terms, the result is undefined rather than unspecified.

81

LEARNING ALGOL 68 GENIE

ment is equal to the symbol ending a comment, it is not possible to have proper nested
comments in Algol 68. To have proper nested comments, Algol 68 Genie should be able
to count how many comments are open, which is not possible if the embedding symbols
are equal. Therefore, if the part of your program that you want to "comment out" already
contains comments, you should ensure that the inner comment symbols are different
from those of the outermost comment, because a68g only scans the outermost comment
and ignores all text until the matching comment symbol?.

A pragmat is a pragmatic remark that you can write in the source code. The Algol 68
definition {24¢.2} leaves it up to the implementation what such pragmatic remark should
do, and in a68g pragmats let you insert command line options in the source code.

A pragmat is surrounded by one of the following pairs of delimiters:

PRAGMAT ... PRAGMAT

For instance, if you have a script that needs a lot of heap space you do not want to have to
specify an option at the command line. Instead you write in the script:

#!/usr/local/a68g
PR heap=256M PR

The pragmat will execute the option at compile time as if you would have specified
——heap=256M
from the command line.

In a68g, by the use of pragmats you can textually include files in your source code; see
section 9.7.2.

4.12 Parallel processing

Algol 68 supports parallel processing on platforms that support Posix threads, such as
Linux. Using the reserved word PAR , a collateral-clause becomes a parallel-clause, in
which the synchronisation of actions is controlled using semaphores. In a68g the parallel
actions are mapped to Posix threads when available on the hosting operating system (and
a68g must be built to support the parallel-clause {9.3.2}. Parallel units coordinate their
actions by means of semaphores. A semaphore constitutes the classic method for restrict-
ing access to shared resources, such as shared stack and heap. It was invented by Edsger

3Compare this to Pascal where comment symbols are { ... } or C where comment sym-
bols are /+« ... x/ making it possible to count how many comments are open; however not all
implementations of those languages allow nested comments.

82

INFORMAL INTRODUCTION TO ALGOL 68

Dijkstra. Usually (and also in Algol 68) the term refers to a counting semaphore, since a
binary semaphore is known as a mutex. A counting semaphore is a counter for a set of
available resources, rather than a locked-unlocked flag of a single resource. Semaphores
are the classic solution to preventing race conditions in the dining philosophers problem
(a generic, abstract problem used for explaining issues with mutual exclusion), although
they do not prevent resource deadlocks. Semaphores remain in common use in program-
ming languages that do not support other forms of synchronisation. Semaphores are the
primitive synchronisation mechanism in many operating systems. The trend in program-
ming language development is towards more structured forms of synchronisation, such as
monitors and channels. In addition to their inadequacies in dealing with (multi-resource)
deadlocks, semaphores do not protect the programmer from easy mistakes like taking a
semaphore that is already held by the same process, or forgetting to release a semaphore.
It has been put forward that it is debatable whether a low-level feature as the semaphore
is a proper feature for a high-level language as Algol 68. A semaphore in Algol 68 is an
object of mode SEMA :

MODE SEMA = STRUCT (REF INT F)

Note that the field cannot be directly selected. For a semaphore, next operators are defined:

1. OP LEVEL = (INT a) SEMA
Yields a semaphore whose value is a.

2. OP LEVEL = (SEMA a) INT
Yields the level of a, that is, field F OF a.

3. OP DOWN = (SEMA a) VOID
The level of a is decremented. If it reaches 0, then the parallel unit that called this
operator is hibernated until another parallel unit increments the level of a again.

4. OP UP = (SEMA a) VOID
The level of a is incremented and all parallel units that were hibernated due to this
semaphore being down are awakened.

Next classical example demonstrates the use of semaphores in Algol 68: producer-consumer-
type parallel processes. In this simple example, production is incrementing an integer and
consumption is decrementing it. Synchronisation is necessary to prevent both "production”
and "consumption" from accessing the integer (the "resource") at the same time; hence the
"consuming” action has to wait for the "producing” action to finish, and vice versa. This
is done in line 2 by giving both actions a semaphore, the "producing” semaphore at level
1 so production can start, and the "consuming" semaphore at level 0 so it must initially
wait for something being produced. Each parallel action starts by performing DOWN on its
semaphore, then do its job, and then perform an UP on the semaphore of the other action.

BEGIN
INT n := 0, SEMA consume = LEVEL 0, produce = LEVEL 1;

83

LEARNING ALGOL 68 GENIE

PAR BEGIN # produce one #
DO DOWN produce;

print (n +:= 1);
UP consume
oD,

consume one
DO DOWN consume;

print (n —-:= 1);
UP produce
0D
END
END

The a68g parallel-clause deviates from the standard Algol 68 parallel-clause when
parallel-clauses are nested. a68g parallel units behave like threads with private stacks.
Hence if parallel units modify a shared variable then this variable must be declared out-
side the outermost parallel-clause, and a jump out of a parallel unit can only be targeted
at a label outside the outermost parallel-clause.

4.13 Jumps

Sometimes one cannot apply strict structural programming, for instance when one needs
to abort a serial-clause. Like most other programming languages, Algol 68 allows to label
units in serial-clauses. A label is an identifier, unique in its reach, followed by a colon-
symbol. A jump to a label is invoked by writing the name of a 1abel as a single primary,
optionally preceeded by a goto-symbol:

stop
GOTO stop
GO TO stop

Actually, stop is a label defined at the last phrases of the standard environment. A jump
to stop therefore ends program execution. Another example is the use of a jump in a
transput event-routine:

on file end (standin, PROC (REF FILE f) BOOL: GO TO file empty)

There are restrictions on placing labels. After a label definition, one cannot write declara-
tions. Declarations themselves cannot be labelled. Labels are not allowed in enquiry-
clauses since you would be able to jump for instance from a then-part back into the if-
part. Declarations are not allowed after a label definition since you would for instance
be able to jump back to before a declaration and execute it again, facilitating dangling
names and scope errors. The rule is that any declaration in a serial-clause must be seen
at most once before that serial-clause ends. This means that after a labelled-unit, you

84

INFORMAL INTRODUCTION TO ALGOL 68

are free to use enclosed-clauses containing their private declarations since a jump out
of a serial-clause effectively ends that serial-clause, and above rule is satisfied.

Jumps are like skips; they also yield an undefined object of the mode required by the
context. But if the context expects a parameter-less procedure of mode PROC vVOID, then a
PROC VOID routine whose unit is that jump is yielded, instead of making the jump:

#!/usr/local/bin/a68g
Commented text taken from:

C. H. Lindsey, A History of Algol 68,
ACM Sigplan Notices, Volume 28, No. 3 March 1993 #

... But worse! Van Wijngaarden was now able to exhibit his
pride and joy - his pseudo-switch [R8.2.7.2]. #
[] PROC VOID switch = (el, e2, e3);

or even
LOC [1 : 3] PROC VOID switch var := (el, e2, e3);
switch var[2] := e3;

To my shame, I must admit that this still works, although implementations
tend not to support it. #

switch var([2];

print ("should not be here");
stop;
e3: e2: el: print ("jumped correctly")

Put above code in a file jump.a68, make it executable with chmod and execute the file to
find:

$./jump.aé68
jumped correctly

which demonstrates that a68g implements proceduring to PROC VOID.

A completer, with reserved word EXIT , provides a completion point for a serial-clause
but cannot occur in an enquiry-clause. A completer can be placed wherever a semicolon-
symbol (the go-on-symbol ;) can appear. A completer must be followed by a label def-
inition or the unit following the completer could not be reached. This is an example of a
completer in line 5:

BEGIN REAL X = read real;
IF 1 < O

85

LEARNING ALGOL 68 GENIE

THEN GOTO negative

FI;
sqgrt (i) EXIT
negative:
0
END

The example also illustrates why this is not a recommendable programming style. In fact,
jumps have their use when it is required to jump out of nested clauses when something
unexpected occurs from which recovery is not practical. Use of jumps should be confined
to exceptions since they can make a programs illegible.

4.14 Assertions

Algol 68 Genie supports an extension called assertions. Assertions can be viewed in
two ways. First, they provide a notation for invariants that can be used to code a proof of
correctness together with an algorithm. Hardly anyone does this, but assertions make for
debugging statements. The assertion syntax reads:

* assertion: assert {8.2} symbol, meek boolean enclosed clause {8.9.1}.

Under control of the pragmat items ’assertions’ and ’noassertions’, the BOOL enclosed-
clause of an assertion is elaborated at runtime. If the enclosed-clause yields TRUE exe-
cution continues but if it yields FALSE, a runtime error is produced. For example:

OP FACULTY = (INT n) INT:
IF ASSERT (n >= 0);
n >0
THEN n % FACULTY (n - 1)
ELSE 1
FI

will produce a runtime error when FACULTY is called with a negative argument.

86

Procedures and operators

5.1 Introduction

A routine is a set of encapsulated actions which can be elaborated in other parts of the
program. A traditional use for routines is to avoid duplicate code or to segment large
programs, but there are of course many valid reasons to create a routine:

1. Reduce a program’s complexity by hiding or abstracting information. For instance,
hide the internal workings of a data structure. Hide how a set of equations is solved
if the actual way in which it is solved is not relevant — use routines from a scientific
library to do linear equations; the persons who wrote them are experts in linear
algebra, while you probably are just interested in obtaining accurate results.

2. Avoid duplicate code, facilitating maintenance of that code, and also making central
points to control the operation of code.

3. Use a routine as a refinement, a tool in top-down program construction introduced
by N. Wirth. As an alternative to using routines as refinements, a68g offers a re-
finement preprocessor {8.13 and 9.7.3}.

In Algol 68, a routine is used in two ways:

1. As a procedure. The routine is invoked by parameter-less deproceduring {5.3} or by a
call where an actual-parameter-list {5.3} is supplied to a routine.

2. As an operator. The routine is invoked by writing a formula {2.6}.

An Algol 68 routine is a value with a well-defined mode. The value of a routine is expressed
as a routine-text which has following production rules:

* routine text:
routine specification, colon {8.2} symbol, strong unit {8.9.5}.

87

LEARNING ALGOL 68 GENIE

* routine specification:
parameter pack option, formal declarer {8.11}.
parameter pack option, void {8.2} symbol.

¢ parameter pack:
open {8.2} symbol, formal parameter list, close {8.2} symbol.

¢ formal parameter: formal declarer {8.11}, identifier {8.6.2}.

A routine-text is a unit.
Consider next example routine-text that sums the element of a row:

([1 INT a) INT:
BEGIN INT sum := 0;
FOR i FROM LWB a TO UPB a
DO sum +:= a[i] OD;
sum
END

In this example, the routine-specification is:
([] INT a) INT

which could be read as with row of integer parameter yielding integer. The mode of the
routine sum is implicitly given by the routine-specification :

PROC ([] INT) INT

Above routine takes one parameter of mode [] INT and yields a value of mode INT.
Often parameters can be written in a concise manner. Now consider the example routine-
specification:

(REAL x, REAL y, REAL z) BOOL
A contraction of identifiers is possible in this case:
(REAL x, vy, z) BOOL

A routine-text without its routine-specification is sometimes called a body. The body
of the above routine-text is:

BEGIN INT sum := 0;
FOR i FROM LWB a TO UPB a
DO sum +:= a[i] OD;
sum

END

The routine-text yields the sum of the individual elements of the parameter a. The body

88

INFORMAL INTRODUCTION TO ALGOL 68

of a routine-text is a unit. In this case, the body is an closed-clause. Since a routine-
text is a value it can be associated with an identifier by means of an identity-relation:

PROC ([] INT) INT sum = ([] INT a) INT:
BEGIN INT sum := 0;
FOR i FROM LWB a TO UPB a
DO sum +:= al[i] OD;
sum
END

Algol 68 allows not only for procedure constants, but also for procedure variables, so the
next declaration is also valid:

PROC ([] INT) INT sum := ([] INT a) INT:
BEGIN INT sum := 0;
FOR i FROM LWB a TO UPB a
DO sum +:= a[i] OD;
sum
END

Since in procedure-declarations the mode is stated on both sides of the equals-symbol
or becomes-symbol, Algol 68 allows an abbreviation according these production rules:

* procedure declaration:
proc {8.2} symbol, procedure definition list.

* procedure definition: identifier {8.6.2}, equals {8.2} symbol, routine text.

¢ procedure variable declaration:
qualifier option, proc {8.2} symbol, procedure variable definition list.

¢ procedure variable definition: identifier {8.6.2}, becomes {8.2} symbol, rou-
tine text.

For example:

PROC sum = ([] INT a) INT:
BEGIN INT sum := 0;
FOR i FROM LWB a TO UPB a
DO sum +:= a[i] OD;
sum
END

In the routine-specification of above routine, [] INT a is a formal-parameter. At the
time the routine is declared, a does not identify a value and therefore the size of a row

89

LEARNING ALGOL 68 GENIE

parameter is irrelevant. That is why it is called a formal-parameter. It is only when the
procedure is called that a will identify a value. According to the routine-specification,
the routine must yield a value of mode INT. The context of the body of a routine is strong
and the terminal unit of the serial-clause will be coerced. In this case, we have a value
of mode REF INT, sum, which in a strong context will be coerced to a value of mode INT by
dereferencing. Since procedure-declarations are declarations like any other, they can
appear within other procedure-declarations. This is called nesting:

PROC print days = (DATE first, last) VOID:
BEGIN
PROC day of week = (DATE d) STRING:

print ((week day (first), week day (last), new line))
END

In this way one can hide details on the operation of the outer procedure if the inner proce-
dure is not relevant outside the outer procedure.

5.2 Routine modes

The mode of a routine starts with the reserved word PROC, irrespective whether the rou-
tine is a procedure or an operator. A routine has zero or more parameters. The mode of
the parameters may be any mode except VOID and the value yielded may be any mode
including vOID. In the mode of a routine, identifiers are omitted. The modes written for
the parameters and the yield are always formal-declarers, so no bounds are specified if
the modes of the parameters or yield involve rows. Consider the routine-specification:

(REAL x, y, z) BOOL
The mode following from this routine-specification is:
PROC (REAL, REAL, REAL) BOOL

In section 3.11 it was remarked that a mode-declaration cannot lead to infinitely large
objects or endless coercion. It was indicated that REF shields a mode-indicant from its
declaration through a STRUCT. PROC also shields a mode-indicant from its declaration
through a STRUCT. A parameter-pack shields a mode-indicant from its declaration.
It is therefore possible to declare, for example:

MODE NODE = (STRING info, PROC NODE process)
or
MODE P = PROC (P) P # rather academic, but ok #

A routine must yield a value of some mode, but it is possible to discard that value using

90

INFORMAL INTRODUCTION TO ALGOL 68

the voiding coercion. The mode vOID has a single value denoted by EMPTY . VOID cannot
be a formal-declarer of a parameter to a routine, so it is not allowed to write:

PROC (VOID) VOID # which is allowed in C #
though the effect of above (invalid) procedure can be obtained in Algol 68 by writing:
PROC VOID # a parameter-less procedure yielding VOID #

A routine, with or without parameters, can have a result mode VOID in case the routine
performs actions but yields no value. In some languages like Fortran this is the distinction
between a SUBROUTINE and a FUNCTION — the former only performs actions, the latter
(also) yields a value.

In programming practice, because the context of the yield of a routine is strong and any re-
sulting value is voided {6.5.5}, explicitly using EMPTY is almost always unnecessary. A FOR
loop always yields EMPTY. A semicolon-symbol voids the unit that it terminates. Decla-
rations yield no value, not even EMPTY. Therefore clauses cannot end in a declaration,
as demonstrated by this a68g example:
$ a68g —-exec "PROC init = VOID: (INT i := 0)"
1 (PROC init = VOID: (INT i := 0))

2 1

a68g: syntax error: 1l: clause does not yield a value.
a68g: syntax error: 2: clause does not yield a value.

5.3 Cadlls and parameters

Procedures can have no parameters at all; for example consider:
PROC report = VOID: print (("Now at point ", counter +:= 1));

A parameter-less procedure can be invoked by writing its identifier. A parameter-less
procedure is invoked by the deproceduring coercion that is available in every context, even
in a soft context such as the destination of an assignation. Deproceduring is a forced call
of a parameter-less procedure. If the context requires the mode of the identifier itself, a
routine without parameters is not invoked, as in:

PROC INT get int = read int # read int will not be invoked #

In case the context requires a value with mode that is the result mode of the routine, the
routine without parameters is invoked, as in:

LONG INT k := read long int # read long int will be invoked #

where a PROC LONG INT is deprocedured to yield a LONG INT value. In case the context
imposes voiding, a parameter-less routine is deprocedured and if it is not a PROC VOID

91

LEARNING ALGOL 68 GENIE

the value after deproceduring is discarded. To avoid unexpected behaviour, deproceduring
is not used to coerce an assignation, a generator or a cast {6.5} to vOID. Hence if we
consider:

PROC p = VOID: ...;

PROC VOID pp;

pp = pPs

then voiding the assignation pp := p does not involve deproceduring p after the assig-

nation is completed.

Parameters of procedures can have any mode, including procedures, except vOID. Unlike
operators, procedures can have any number of parameters. A procedure with parameters
is not implicitly called by deproceduring, but by writing a call. A call has these production
rules:

¢ call:
meek primary {8.9.2}, open {8.2} symbol, actual parameter list, close {8.2}
symbol.

* actual parameter:
strong unit {8.9.5} option.

In strict Algol 68, an actual-parameter is a strong-unit while in a68g it is a strong-
unit-option because a68g allows for partial-parameterisation {5.10}. The most common
example of a call is writing the identifier of a procedure followed by an argument list. The
argument list consists of arguments separated by comma-symbols; the list is enclosed in
parenthesis. For example, the procedure sum declared {5.1} can be invoked by a call:

print ((sum ((1, 2, 3, 4, 5, 6, 7, 8, 9, 10)), new line))

which will produce 55 on standard output. A call binds as tightly as a slice, that is, more
tightly than a selection or a formula. This will be treated at length in chapter 8. Algol 68’s
allows you to write, instead of a procedure identifier, any primary (see chapter 8) that
yields a procedure; for example:

r * (on x axis | cos | sin) (angle)
calls either sin (angle) or cos (angle) depending on the BOOL value of on x axis.

Algol 68’s orthogonality allows you to write a mode-declaration involving a routine-mode,
or declare a structure with a procedure field:

MODE METHOD = STRUCT (FUN f, CHAR name),
FUN = PROC (REAL) REAL;
METHOD sinus := (sin, "sin")

In the structure sinus, the procedure can be selected by:

92

INFORMAL INTRODUCTION TO ALGOL 68

f OF sinus + sinus|[f]

which is a selection with mode REF PROC (REAL) REAL, which is a procedure-variable.
A procedure-variable will be dereferenced before being called. Recall that a call binds
as tightly as a slice, that is, more tightly than a selection or a formula. Hence if you
want to call the procedure £ OF sinus, you must enclose the selection in parentheses:

(f OF sinus) (pi) « sinus[f] (pi)

Since a routine is a value, it is possible to declare values whose modes include a procedure
mode, for example:

[] PROC (REAL) REAL trig = (sin, cos, tan)
after which you could write the call :
trig[read int] (read real)

In standard Algol 68, a call of a routine must supply the same number of actual par-
ameters, and in the same order, as there are formal parameters in the procedure-
declaration. However, a68g offers an extension called partial parameterisation {5.10}.

Recall that in Algol 68, bounds are not part of a row mode. Since a formal-parameter
which is a row has no bounds written in it, any row having that mode could be used as the
actual-parameter. This means that if you need to know the bounds of the actual row,
you will need to use operators interrogating bounds as LWB, UPB or ELEMS. An example is
a routine-text which finds the smallest element in its row parameter a:

([] INT a) INT:

(INT min := a[LWB alj;

FOR i FROM LWB a + 1 TO UPB a
DO (af[i] < min | min := al[i])
OD;

min

)

When a parameter is a name, the body of the routine can have an assignation which
makes the name refer to a new value. For example:

(REF INT a) INT: a := 0
Note that the unit in this case is a single unit and so does not need to be enclosed.

If a flexible name is used as an actual-parameter, then the mode of the formal-parameter
must include the mode constructor FLEX . For example:

(REF FLEX [] CHAR s) INT:

In this example, the mode of s could equivalently have been written as REF STRING.

93

LEARNING ALGOL 68 GENIE

You will have to be particularly careful when a formal-parameter of a procedure is a
flexible name. A mechanism is in place in a68g to ensure that one cannot alter the bounds
of a non-flexible row by aliasing it to a flexible row. This is particularly the case when
passing names as parameters to procedures. For example, in a range that holds next
declarations:

PROC x = (REF STRING s) VOID: ...,
PROC y (REF [] CHAR c) VOID: ...;

these problems could occur:

(LOC STRING); # OK #

(LOC [10] CHAR); # Not OK, suppose x changes the bounds of s! #
(LOC STRING); # OK #

(LOC [10] CHAR); # OK #

KOROX X

a68g issues an error if it encounters a construct that might alter the bounds of a non-
flexible row.

Parameters can be of any mode but VOID, so it is possible to pass procedures as param-
eters. Many procedures take a procedure as a parameter, for instance:

PROC series sum = (INT n, PROC (INT) REAL func) REAL:
(LONG REAL s := 0;
FOR i TO n
DO s +:= LENG func (i)
0D;
SHORTEN s
)

Note that the mode of the procedure parameter is a formal mode so no identifier is re-
quired for its INT parameter in the routine-specification of sum. In the loop-clause,
the procedure is called with an actual-parameter. When a parameter must be a proce-
dure, any unit yielding a routine-text can be supplied. For instance, a predeclared proce-
dure identifier can be supplied, as in:

PROC rec = (INT a) REAL: 1 / a;
series sum (1000, rec)

or a routine-text:

series sum (1000, (INT a) REAL: 1 / a)

In this case, the routine text has mode PROC (INT) REAL, so it can be used in the call
of series sum. Note also that, because the routine text is an actual-parameter, its
routine-specification includes the identifier a. In fact, routine-texts can be used wher-
ever a procedure is required, as long as the routine-text has the required mode. The

94

INFORMAL INTRODUCTION TO ALGOL 68

routine-text given in the call is on the right-hand side of the implied identity-declaration
of the elaboration of the parameter.

5.4 Routines and scope

Since the yield of a routine can be a value of any mode, a routine can yield a name, but
there is a restriction: the name yielded must have a scope larger than the body of the
routine. This means that any names declared to be local, cannot be yielded by the routine.
The reason for this is simple: when the routine terminates, it discards the local objects it
generated, so any reference to those local object would point at something that no longer
exists. It was mentioned that a new name can be generated using the generator L.oC. Now
look at this routine which should yield a name generated within its body:

(INT a) REF INT: LOC INT := a # wrong ¥

This routine is wrong because the scope of the name generated by LOC INT is limited to
the body of the routine. a68g provides both compile-time and run-time scope checking, and
will flag this error. There is a way of yielding a name declared in a routine. This is achieved
using a global generator:

(INT a) REF INT: HEAP INT := a

In section 2.11 we saw that identifiers have range, but values have scope. The dynamic
lifetime of a value is called its scope in Algol 68. A routine-text also is a value, but a
potential scope problem arises when you write a routine that yields another routine. There
is a danger that a routine gets exported to some place where the symbols that the exported
routine applies, no longer exist. For example, next declaration is wrong:

MODE FUN = PROC (REAL) REAL;
MODE OPERATOR = PROC (FUN) FUN;
OPERATOR deriv = (FUN f) FUN: (REAL x) REAL: f (x) - f (x - 1);

the danger is that £ may no longer exist when the routine yielded by deriv gets called,
and a68g will warn you for the potential danger:

95

LEARNING ALGOL 68 GENIE

$ a68g examples/scope.a68 {-}{-}warnings

3 OPERATOR deriv = (FUN f) FUN: (REAL x) REAL: f (x) - £ (x - 1);
1

a68g: warning: 1: PROC (REAL) REAL value from routine-text could

be exported out of its scope (detected in particular-program).

For this reason one cannot export a routine out of the ranges that hold all declarations
(identifiers, operators, modes) that the exported routine applies. A routine is said to have
thus a necessary environment outside of which the routine is meaningless.

5.5 Declaring new operators

An operator is called monadic when it takes one operand, or dyadic when it takes two
operands in which case it also needs a priority. Monadic-operators have priority over
any dyadic-operator. Operators are declared according these production rules:

* brief operator declaration:
operator {8.2} symbol, brief operator definition list.

* brief operator definition list:
operator {8.6.3}, equals {8.2} symbol, routine text.

* operator declaration:
operator plan, operator definition list.

* operator plan:
operator {8.2} symbol, routine specification.

* operator definition list:
operator {8.6.3}, equals {8.2} symbol, strong unit {8.9.5}.

For example:
OP (INT) INT ABS = (INT a) INT: (a >= 0 | a | -a)

There are several points to note. The mode of the operator is PROC (INT) INT. That is, it
takes a single operand of mode INT and yields a value of mode INT. The right-hand side
of the identity-declaration is a routine text. Since the routine-text forces a mode for
the operator, an abbreviated brief-operator-declaration can be used:

OP ABS = (INT a) INT: (a >= 0 | a | -a)

96

INFORMAL INTRODUCTION TO ALGOL 68

An operator symbol can be a tag as ABS or REPR. a68g accepts a tag that starts with an
upper-case letter, optionally followed by upper-case letters or underscores. Since spaces are
not allowed in an upper-case tag to avoid ambiguity, underscores can be used to improve
legibility. The use of underscores is not allowed in standard Algol 68. Many of the operators
described up to now are not words but composed of mathematical symbols as + or *x.
Since spaces have no meaning in between operator-symbols composed of mathematical
symbols, rules apply to guarantee that any sequence of symbols has one unique meaning.
To avoid ambiguity in parsing operator symbol sequences, operator characters are divided
into monads and nomads, the latter group being inherently dyadic. Next rules force that
for instance 1++-1 can only mean (1) + (+(-2)),and 1+>2 canonly mean (1) +> (2)
and not (1) + (>2).

1. a monadic-operator symbol is a monad, optionally followed by a nomad.

2. a dyadic-operator symbol is either a monad or a nomad, optionally followed by a
nomad.

3. an operator symbol consisting of monads or nomads may be followed by either : =
or=:.

4. monads are +,—, *, “and !, ?, % and &.
5. nomads are <, >, /, = and *. Again, a monadic-operator cannot start with a no-

mad.

Note that Algol 68 forbids operator-symbols that start with a double monad, such as
++, — or &&, although dyadic-operator symbols starting with a double nomad (*x, »,
et cetera) are allowed. Declarations of operators using above rules are:

OP %
OopP -—:

(BOOL b) BOOL: b AND read int > O0;
= (REF CHAR ¢, d) INT: c := REPR (ABS c - ABS d)

The difference between monadic-operators and dyadic-operators is that the latter
have a priority and take two operands in stead of one. Therefore the routine-text used
for a dyadic-operator has two formal-parameters. The priority of a dyadic-operator
is declared using the reserved word PRIO :

¢ priority declaration:
prio {8.2} symbol, priority definition list.
¢ priority definition list:
operator {8.6.3}, equals {8.2} symbol, priority digit
For example:

PRIO *x = 9, +=: =1

97

LEARNING ALGOL 68 GENIE

The declaration of the priority of the operator uses a priority-digit in the range 1 to
9 on the right-hand side. Consecutive priority-declarations do not need to repeat the
reserved word PRIO, but can be abbreviated in the usual way. The priority-declaration
relates to the operator symbol, not to the modes of operands or result. Hence the same
operator cannot have two different priorities in the same range, but there is no reason why
an operator cannot have different priorities in different ranges.

5.6 Identification of operators

An obvious consequence of being able to declare operators with common operator-symbols
as + or ELEM is that there can be more than one declaration of the same operator sym-
bol. Think for instance of a + for integers, for reals, for complex values, et cetera. This is
called operator overloading. How does Algol 68 Genie identify the operator to use when var-
ious definitions exist? As in identifying any declaration, Algol 68 Genie will first search
the range in which it finds the application of that declaration (in this case, an opera-
tor symbol). If no such declaration is in that range, it will search the embedding range,
and so on outwards until finally the standard prelude is searched. Suppose Algol 68 Genie
finds a declaration with matching operator symbol and matching number of operands.
How is it identified as the operator to be actually used? To answer that question we must
know the coercions that apply to an operand. The syntactic position of an operand is
a firm context. In a firm context we can have (repeated) dereferencing and deprocedur-
ing, followed by uniting. Uniting will be discussed in chapter 8. In determining which
operator to use, Algol 68 Genie finds, in the smallest range enclosing the formula, that
operator-declaration with correct number of operands, whose modes can be obtained
from the operands in question using coercions allowed in a firm context. This way of iden-
tifying operators has an important consequence: if in a same range there could exist two
operator-declarations taking the same number of operands of modes that can be co-
erced to each other by firm coercions (these modes are called firmly related) and Algol 68
Genie would have no way to choose between the two. This condition is therefore forbidden,
it is not valid Algol 68. One cannot in the same range declare multiple operators whose
operands are firmly related. For instance you could not declare in one range:

op 2 (INT k) INT: k OVER 2;
OP ? = (REF INT k) BOOL: k IS NIL

since this would lead to ambiguous identification:
29

may identify the first declaration but:

INT k := read int;

7k

98

INFORMAL INTRODUCTION TO ALGOL 68

is ambiguous. The identification of dyadic-operators proceeds exactly as for monadic-
operators except that the most recently declared priority in the same range is used to
determine the order of elaboration of operators in a formula.

5.7 Recursion

An elegant property of Algol 68 procedures and operators is that they can call themselves.
This is known as recursion. A paradigm of recursion is the Ackermann function which is a
well-known recursive definition in mathematics. This is the Rézsa Péter version of 1935:

PROC ack = (INT m, n) INT:
IF m =0
THEN n + 1
ELSE (n = 0 | ack (m - 1, 1) | ack (m - 1, ack (m, n - 1)))
FI;

The Ackermann function, conceived in 1928, is Turing computable, but not primitive re-
cursive (id est, requires indefinite iteration) and was a counterexample to the belief in the
early 1900’s that every computable function would also be primitive recursive. This is a
function only of interest in number theory, but it does find practical application in test-
ing compilers for their ability to perform deep recursion well since it grows faster than an
exponential or even multiple exponential function. For m > 4 results get spectacular, for
example

A4,n)=21"T(n+3)—3
where 2 1™ k; k > 1 denotes a tetration.

Next example is another illustration of a recursive procedure that calculates the number
of ways to split an amount of money in coins of 2 Euro, 1 Euro, 50 ct, 20 ct, 10 ct and 5 ct. It
applies back-tracking, which is constructing a tree of all possible combinations and cutting
off impossible branches as early as possible:

PROC count = (INT rest, max) INT:
IF rest =0
THEN 1 # Just right, valid combination found #
ELIF rest < 0
THEN O # Invalid combination, subtracted too much #
ELSE INT combinations := 0;
FOR i TO UPB values
WHILE values[i] <= max
DO combinations +:= count (rest - values[i], values[i])
OD;
combinations

99

LEARNING ALGOL 68 GENIE

FI;

[] INT values = (5, 10, 20, 50, 100, 200), INT amount = 500 # cents #;
print (count (amount, amount))

5.7.1 Fast Fourier Transform

Some more points of interest to recursion will be illustrated by a non-trivial example which
is a workhorse from numerical analysis: the Fast Fourier Transform or abbreviated, FFT.
It can be easily proven that the k' element of a discrete Fourier transform

N-1
F, = Z eQﬂ'zk/ij
j=0

can be rewritten as the sum of two sub-transforms
2mik /N
Fk: = Fk,even + e ™ / Fk,odd

where Fj, cen, is the transform of the even-numbered elements and Fj, ,q¢ is the trans-
form of the odd-numbered elements. This splitting of the transform can be applied re-
cursively, meaning that transform F}, .., and Fj ,qq can be obtained by calculating their
sub-transforms et cetera, up until the point where the transform becomes trivial when
there is just one element:

F=f;N=1

which is an identity. The advantage of binary splitting is that the complexity of a Fourier
transform can be greatly reduced. A Fourier transform of length N requires N2 operations.
The binary splitting reduces that to NV log, IV operations. That is an immense improvement
for large N, and many practical datasets are large. This is a naive but instructive imple-
mentation of the FFT!:

OP FFT = (REF [] COMPLEX f) VOID:
IF # Unnormalised Fast Fourier Transform in recursive form:
ELEMS f must be a power of 2 and LWB f must be zero. #

INT length = ELEMS f;
length =1

THEN # When the length is 1, the transform is an identity #
SKIP

ELSE INT middle = length OVER 2;
Calculate sub-transforms recursively

Note that this simple form of FFT involves a binary split in every sub-transform, and that
therefore the number of elements in F' must be a power of 2. Algorithms that lift this limitation of
FFT are out of the scope of this text.

100

INFORMAL INTRODUCTION TO ALGOL 68

[0 .. middle - 1] COMPLEX f even, f odd;
FOR i FROM 0 TO middle - 1
DO f even[i] := f[2 * 1i];
f odd[i] := f[2 *» i + 1]
OD;

(FFT £ even, FFT f odd);
Calculate transform at this level
FOR k FROM 0 TO middle - 1
DO REAL phi = 2 * pi * k / length;
COMPLEX w = cos (phi) I sin (phi);
flk] := £ evenlk] + w » £ odd[k];
flk + middle] := f evenl[k] - w x £ odd[k]
oD
FI;

where (FFT f even, FFT f odd) is an example of a VOID collateral-clause {8.9.1}.
Note that the routine does assignations to elements of its arguments that must therefore
be of mode REF [] COMPLEX. When the parameter f holds a single element, the trans-
form is an identity and the routine just returns. When the length of the parameter is a
power of two, the transform is calculated by making a binary split into even and odd ele-
ments, which are then transformed recursively. Obviously, when the transformation is in
progress, various calls to FFT are made, and every instant of FFT — which is called an
incarnation of the routine — must wait for the sub-transform to finish, before it can con-
tinue. Hence various incarnations of a routine can exist at the same time; only the deepest
(youngest) one being active, and the older ones awaiting completion of the younger ones.
Algol 68 elaborates every new incarnation of a routine as if the called routine’s body were
textually and if applicable recursively inserted into the source code. Algol 68 is defined such
that no incarnation can have access to locally defined tags in another incarnation. If such
access is needed, such tag must be passed along as a parameter when calling a deeper in-
carnation. Hence every declaration in a routine is private to an incarnation; for instance,
every incarnation of FFT has its own f even and £ odd but also 1ength et cetera.

5.7.2 Space-filling curves

A beautiful demonstration of the elegance of recursion is the drawing of so-called space-
filling curves. The mathematician Giuseppe Peano studied among many other subjects the
projection of a square onto a line?. He considered a set of curves, constructed from straight
line segments. The n'* member of the set is a continuous curve that passes all points in
the square at a distance of at most 27", a so-called Peano curve. There are various such
sets and here we will demonstrate an algorithm due to A. van Wijngaarden that draws a
particular solution that is known as a Hilbert-curve. Drawing the Hilbert-curve actually

2@G. Peano. Sur une courbe, qui remplit toute une aire plaine. Math. Annln. (36) 157-160 [1890]

101

LEARNING ALGOL 68 GENIE

was an exercise in Algol 68 programming classes. The 0"* member of the curve is trivial,
it is a point in the centre of the plane. The first member n = 1 starts at the bottom of the
figure and end at its top, we call this orientation "up":

By successive clockwise rotation by 90 degrees we also get orientations "right", "down",
and "left". The divide-and-conquer strategy in this problem is to divide the plane into four
equal squares, and combine the four orientations to allow drawing a continuous curve by
recursively applying our strategy. For example, we construct the orientation "up" of the
second member n = 2 in a convenient way:

Above figures are drawn using next procedure for orientation "up":

PROC draw up = (INT n) VOID:
IF n > 0
THEN draw right (n - 1);

line to ((x OF origin + d, y OF origin));
draw up (n - 1);
line to ((x OF origin, y OF origin + d));
draw up (n - 1);

line to ((x OF origin - d, y OF origin));
draw left (n - 1)
FI;

The routine composes orientation "up" of the n* member of the curve by combining (n—1)*

102

INFORMAL INTRODUCTION TO ALGOL 68

members of the curve until the member n = 1 gets drawn. One can now compose member
n = 3 in an analogous way and see how it is composed of n = 2 members:

] L
JdbL
|]

A complete program that was used to make above drawings is in example 11.7. It is left
as an exercise to show that the Euclidean length of the Hilbert curve, member n, reads:

1

2"~ o

that is, grows exponentially.

5.7.3 Recursion versus iteration

An iterative routine is likely to be slightly faster in practice than a recursive equivalent
because iterative routines do not have the call overhead of recursive routines. There are
other types of problems whose solutions are inherently recursive, because they need to
keep track of prior state. One example is tree traversal; others include the Ackermann
function and divide-and-conquer algorithms such as quicksort. All of these algorithms can
be implemented iteratively with the help of a stack, but the need for the stack arguably
nullifies the advantages of the iterative solution. Another possible reason for choosing an
iterative rather than a recursive algorithm is that in today’s programming languages, the
stack space available to a thread is often much less than the space available in the heap,
and recursive algorithms tend to require more stack space than iterative algorithms.

5.8 Recursion and data structures

In mathematics and computer science, graph theory is the study of mathematical struc-
tures used to model pairwise relations between objects from a certain collection. A graph
in this context refers to a collection of vertices or 'nodes’ and a collection of edges that
connect pairs of vertices. This is not the place to discuss topics in graph theory but it sets
the background for this section. We will demonstrate how to handle data structures where
nodes of a same mode refer to each other.

103

LEARNING ALGOL 68 GENIE

5.8.1 Linear lists

A linked list is a fundamental data structure, and can be used to implement other data
structures. A linked list is a self-referring data structure because each node contains a
pointer to another node of the same type. Practical examples are process queues or lists
of free blocks in heap management. Linked lists permit insertion and removal of nodes at
any point in the list, but do not allow random access. A linear list is a finite set in which
the elements have the relation is followed by. We call it linear because each element has
one successor. We could of course try to represent it by a row of elements:

MODE LIST = FLEX [l : 0] ELEMENT

The principal benefit of a linked list over a row is that the order of the linked items may
be different from the order that the data items are stored, allowing the list of items to be
traversed in a different order. Also, inserting an element in a row is an expensive operation.
An elegant representation is a self-referring data structure:

Data structure and primitive operations:

MODE NODE = STRUCT (ELEMENT info, LIST successor),
LIST = REF NODE;

LIST empty list = NIL;

OP ELEM = (LIST list) REF ELEMENT: info OF 1list,
OP REST (LIST list) REF LIST: successor OF list

Note that REST yields a REF REF NODE, a pointer-variable
OP EMPTY = (LIST list) BOOL: list IS empty list

OP ELEM = (INT n, LIST list) REF ELEMENT:
IF EMPTY list OR n < 1
THEN empty list # thus we mark an error condition #
ELSE (n = 1 | ELEM list | (n - 1) ELEM list)
FI;

PRIO ELEM = 9
A routine to have a denotation for lists:

PROC make list = ([] ELEMENT row) LIST:
IF ELEMS row 0
THEN empty list
ELSE HEAP NODE := (row[i], make list (row[LWB row + 1 : UPB row]))
FI

Operators to add an element to a list:

104

INFORMAL INTRODUCTION TO ALGOL 68

Add at the head
OP + = (ELEMENT elem, LIST list) REF LIST:
HEAP LIST := (elem, list)

Add at the tail

OP +:= = (REF LIST list, ELEMENT elem) VOID:
IF EMPTY list
THEN list := HEAP LIST := (elem, empty list)
ELSE REST list +:= elem
FI

Several different types of linked list exist:

1. singly-linked lists as discussed above, where each node points at its successor,
2. doubly-linked lists in which each node points to both predecessor and successor,

3. circularly-linked lists in which the last node points back at the first one which is
especially useful when implementing buffers.

Linked lists sometimes have a special dummy or sentinel node at the beginning or at the
end of the list, which is not used to store data. Its purpose is to simplify some operations,
by ensuring that every node always has a previous and next node, and that every list (even
an empty one) always has a first and last node. Lisp has such a design — the special value
nil is used to mark the end of a proper singly-linked list; a list does not have to end in
nil, in which case it is termed improper.

5.8.2 Trees

A binary tree is a data structure in which each node refers to two other nodes. Binary
trees are commonly used to implement binary search trees and binary heaps. Next is the
paradigm quicksort routine in Algol 68:

MODE NODE = STRUCT (INT k, TREE smaller, larger),
TREE = REF NODE;
TREE empty tree = NIL;

PROC sort = (REF TREE root, INT k) VOID:
IF root IS empty tree
THEN root := HEAP NODE := (k, empty tree, empty tree)

ELSE sort ((k < k OF root | smaller OF root | larger OF root), k)
FI;

PROC write = (TREE root) VOID:
IF root ISNT NIL

105

LEARNING ALGOL 68 GENIE

THEN write (smaller OF root);

print ((whole (k OF root, 0), "™ "));
write (larger OF root)
FI;
TREE root := empty tree;
WHILE INT n = read int;
n>20
DO sort (root, n)

OD;
write (root)

Compare the version above with next iterative version, which is the so-called triple-REF
trick:

MODE NODE = STRUCT (INT v, REF NODE less, more);
REF NODE empty tree = NIL;

PROC sort = (INT v) VOID:
BEGIN
REF REF REF NODE place = LOC REF REF NODE := root;
WHILE place ISNT empty tree
DO place := (v < v OF place | less OF place | more OF place)
OD;
REF REF NODE (place) := HEAP NODE := (v, empty tree, empty tree)
END;
PROC write = (TREE root) VOID:

IF root ISNT NIL
THEN write (smaller OF root);

print ((whole (k OF root, 0), "™ "));
write (larger OF root)
FI;
REF REF NODE root = LOC REF NODE := empty tree;
WHILE INT n = read int;
n>20
DO sort (n)

OD;
write (root)

This is an example of an application of a REF REF REF object, that is, a pointer-to-pointer
variable. Program 11.6 demonstrates building a decision tree in Algol 68. An elaborate
example using lists is example program 26;,.10 which does formula manipulation.

106

INFORMAL INTRODUCTION TO ALGOL 68

5.9 Recursive mode declarations

A curiosity of Algol 68 that does not receive a lot of attention is that elaboration of some
far-sought mode-declarations can generate recursive calls of code. This is possible since
a tag can be applied before it is declared, so application in actual bounds of a rowed mode
while it is being declared can make code in a mode-declaration recursive. This may lead
to fuzzy code like this example:

MODE FAC = [1 : (n > 0 | m #:= n; n —:= 1; LOC FAC; n | 0)] INT;
INT m := 1, n := 10;

LOC FAC;

print ((m, n))

Such code actually runs under a68g:

$ a68g rec_mode.a68
+3628800 +0

Using this type of recursion will be regarded as amusing by some, but most will agree that
this is not a recommended programming style.

5.10 Partial parameterisation and currying

a68g offers partial parametrisation similar to C.H. Lindsey’s proposal [Lindsey AB39.3.1]
giving the imperative language Algol 68 a functional sub language [Koster 1996]. A formal
description of this proposal can be found in this publication as an appendix to the Algol 68
Revised Report {20}. With a68g a call does not require that all arguments be specified. In
case not all of the actual-parameters are specified, a call yields a routine (with identical
body but with already specified arguments stored) that requires the unspecified actual-
parameters. With Algol 68 Genie, when specification of all required actual-parameters
is complete (complete closure) a procedure will actually be evaluated to yield its result. Par-
tial parameterisation is closely related to currying, a transformation named after Haskell
Curry. Currying is transforming a function f : (z x y) — z into f : (z) — (y — z2). This
transformation is for instance used in A-calculus.

a68g does not save copies of the stack upon partial parameterisation, as happens for exam-
ple in Lisp; the yield of a partially parameterised call in an environ E, cannot be newer in
scope than E. Therefore stored actual-parameters cannot refer to objects in stack frames
that no longer exist, and dynamic scope checking extends to stored actual-parameters.
A routine may be parameterised in several stages. Upon each stage the yields of the new
actual-parameters are stored inside the routine’s locale and the scope of the routine
becomes the newest of its original scope and the scopes of those yields. Following is an
example of partial parameterisation:

107

LEARNING ALGOL 68 GENIE

Raising a routine to a power
MODE FUN = PROC (REAL) REAL;

PROC pow = (FUN f, INT n, REAL x) REAL: f (x)

OP xx = (FUN £, INT n) FUN: pow (£, n,);

Example: sin (3 x) = 3 sin (x) — 4 sin %% 3
This follows from DeMoivre’s theorem. #

REAL x = read real;

print ((new line, sin (3 % x), 3 % sin (x) -

108

4

** n;

(x);

* (sin *x 3)

Modes, contexts and coercions

6.1 Introduction

Algol 68 only allows modes that define objects of finite size and that do not give rise to
infinite coercion. This chapter describes which modes are well-formed in this respect. Also,
in Algol 68 two modes are equivalent when they have an equivalent structure. The rules
for structural equivalence are explained here.

Next, this chapter gives an overview of syntactic contexts and their allowed or applicable
coercions. The mechanism of implicit coercions in Algol 68 has met critisism for being
"overly complicated", but considering current state of affairs the mechanism is one of the
few that gives a concise, logical definition of possible coercions per situation. The key two
rules are:

1. There are five types of context of decreasing strength named strong, firm, meek, weak
and soft.

2. There are six coercions named deproceduring or dereferencing, uniting, widening,
rowing and voiding. With decreasing strength of the context, less of these coercions
are either allowed or applicable. A strong context allows all coercions, a soft context
allows only one of them.

6.2 Well-formed modes

It was already pointed out that not all possible mode-declarations are allowed in Al-
gol 68. The syntax of Algol 68 forces that a mode cannot give rise to (1) an infinitely large
object or (2) endless coercion. Now that the description of mode constructing elements is
complete, we can give the rules for determining whether a mode is well-formed. There are
two reasons why a mode might not be well-formed:

1. elaboration of a declaration using that mode would generate an infinitely large
object:

109

LEARNING ALGOL 68 GENIE

MODE FRACTAL = [100] FRACTAL,
LIST = STRUCT (INT index, LIST next)

2. coercion of that mode leads to an endless or ambiguous sequence of coercions:

MODE POINTER = REF POINTER,
CELL = UNION (STRING content, REF CELL next)

All non-recursive mode-declarations are well-formed. It is only in recursive and mutually-
recursive modes that we have to apply a test for well-formedness. Let us look at some
examples of modes which are not well-formed. Consider the invalid mode-declaration:

MODE LIST = STRUCT (INT index, LIST next)

where field LIST next would expand to a further STRUCT and so on ad infinitum. How-
ever, if the mode within the STRUCT is shielded by REF or PROC, then the mode-declaration
is valid since an object of such mode will be of finite size:

MODE LIST = STRUCT (INDEX index, REF LIST a)

Likewise, the declaration:
MODE LIST = STRUCT (INT index, PROC LIST action)

is well-formed because in any declaration, the second field is a procedure (or a name
referring to such a procedure) which is not the original structure and so does not generate
objects of infinite size. A UNION does not shield the mode as does a STRUCT. The mode-
declarations:

MODE A = UNION (INT, REF A);
MODE B = STRUCT (UNION (CHAR, B) u, CHAR c)

are not well-formed. If we would have an object of mode REF A that would need coercion to
A in a firm or strong context, the coercion could either be dereferencing or uniting, which
is ambiguous. B again leads to objects of infinite size since B must be expanded to know
the size of the union. All the above declarations have been recursive, but not mutually
recursive. It is not possible to declare:

MODE A = STRUCT (B a, INT i),
B = STRUCT (A a, CHAR 1)

since the elaboration of declarations using either mode would generate an infinite object,
so the modes are not well-formed. The following pair of mode-declarations are however
well-formed since proper shielding is provided:

MODE A = STRUCT (REF B a, INT i),
B = STRUCT (PROC A a, CHAR 1)

110

INFORMAL INTRODUCTION TO ALGOL 68

6.2.1 Determination of well-formedness

In any mutually-recursive mode-declarations, or any recursive mode-declaration, to
get from a particular mode on the left hand side of a mode-declaration to the same mode-
indicant written on the right hand side of a mode-declaration, it is necessary to traverse
various mode constructors. A STRUCT or PROC with parameters gets attribute yang. A REF
or parameter-less PROC gets attribute yin. A UNION gets neither yin nor yang. Trace the
path from the mode-indicant in question on the left-hand side of the mode-declaration
until you arrive at the same mode-indicant on the right-hand side. If you have traversed
at least one yin and at least one yang, the mode is well-formed — the definition is properly
shielded from its application. Consider a recursive mode-declaration:

MODE LIST = STRUCT (INT index, LIST next)

To get from LIST on the left to LIST on the right, only yang is traversed thus LIST is not
well-formed. In the mode-declaration:

MODE LIST = STRUCT (INDEX index, REF LIST next)

one traverses yang (STRUCT) and yin (REF), so LIST is well-formed. More examples are:

1. MODE A = INT
is well-formed.

2. MODE B = PROC (B) VOID
is well-formed.

3. MODE B = PROC (B) B
is well-formed.

4. MODE C = [3, 3] C
is not well-formed.

5. MODE D = STRUCT (BOOL p, D m)
is not well-formed.

6. MODE E = STRUCT (STRING s, REF E m)
is well-formed.

7. MODE A = STRUCT (REF B f),
B = PROC (INT) A
is well-formed.

8. MODE A = PROC (B) VOID,
B = STRUCT (A a)
is well-formed.

111

LEARNING ALGOL 68 GENIE

9. MODE A

PROC (B) A,
MODE B STRUCT (PROC C ¢, STRUCT (B b,INT i) d),
MODE C UNION (A, B)

is not well-formed.

6.3 Equivalence of modes

In Algol 68, modes are equivalent if they have an equivalent structure. This principle is
called structural equivalence. Compare this for example with Pascal where two objects are
only of the same mode (type, in that language) when they are declared with the same type
identifier. The rules for structural equivalence in Algol 68 are intuitive:

1. rows are of equivalent mode when the elements have equivalent modes. Bounds are
not part of a mode.

2. structures are equivalent when fields in a same position have equivalent modes and
identical field names. Field names are part of a mode.

3. procedures are equivalent when parameters in a same position have equivalent
modes, and the result modes are equivalent,

4. unions are equivalent when for every constituent mode in one there is an equivalent
constituent mode in the other.

For instance, these two modes are equivalent:

MODE COMPLEX = STRUCT (REAL re, im), PERPLEX = STRUCT (REAL re, im)
but these two are not equivalent:

MODE COMPLEX = STRUCT (REAL re, im), POLAR = STRUCT (REAL r, theta)
and these are equivalent:

MODE FUNC = UNION (COMPLEX, PROC (COMPLEX) PERPLEX),
GUNC = UNION (PERPLEX, PROC (PERPLEX) COMPLEX)

As you are well aware by now, mode-declarations can get quite entangled. The algorithm
that a68g uses to determine the equivalence of two modes, is to prove equivalence assum-
ing that the two are equivalent. The latter assumption is necessary since in many cases
a proof of equivalence eventually comes down to cyclic sub-proofs as A = B if and only if
A = B, and mentioned assumption resolves these situations. Structural equivalence has
an important consequence when defining modes for unrelated quantities. For instance, one
could write:

112

INFORMAL INTRODUCTION TO ALGOL 68

MODE WEIGHT = REAL, DISTANCE = REAL;
WEIGHT w = read real; DISTANCE r = read real;
print (w + r) # 2 #

It makes of course no sense to add a WEIGHT to a DISTANCE, but since both are structurally
equivalent, a REAL, it is impossible to set them apart in Algol 68. We could pack them in a
structure:

MODE WEIGHT = STRUCT (REAL u), DISTANCE = STRUCT (REAL v);

but this is no more than a trick, for example used in program 26,,.10. In Algol 68 there is
no simple way to abstract from a mode’s representation, which is considered a weakness of
the language.

6.4 Contexts

Below is a list of syntactic positions per strength and the coercions allowed in them. Next
section discusses the coercions in detail.

1. Strong contexts

(a) The actual parameters of calls

(b) The enclosed-clauses of casts

(c) The source unit of assignations (the destination imposes the mode)

(d) The source unit of identity-declarations (the declarer imposes the mode)

(e) The source unit of variable-declarations (the declarer imposes the mode)

(f) The units of routine-texts

(g) vOID units (the imposed mode is VOID)

(h) Subordinated constituents of a balanced construct
In a strong context, the mode that is expected from a construct is imposed by the
context. Therefore all coercions are allowed to arrive at the imposed mode: deproce-
during, dereferencing, uniting, widening, rowing and voiding. One can use a cast to
force a strong context and thus force coercion to the mode specified by the cast. A cast
consists of a mode-indicant followed by a strong-enclosed-clause. A cast forces
a strong context for its enclosed-clause. It can for example be used to dereference

exactly to the name required, as seen in paragraph 2.11, or it can be used to force the
mode of a display when required, for instance COMPLEX (1, O0).

2. Firm contexts

(a) Operands of formulas

113

LEARNING ALGOL 68 GENIE

114

In a firm context widening and rowing are not allowed since this would lead to impos-
sible situations as for instance not being able to write an operator for addition of INT
operands when one for REAL operands also exists, or to write an operator for both
scalars and vectors. Voiding does not apply in a firm context since operands cannot
be of mode VOID.

. Meek contexts

(a) Enquiry-clauses

(b) Primaries of calls

(c) The units following FROM, BY and TO or DOWNTO

(d) Units in trimmers, subscripts and bounds

(e) Enclosed-clause of a format-pattern

(f) Enclosed-clause of a replicator

(g) Left-hand side integral tertiary of stowed-functions
(h) The boolean enclosed-clause of an assertion

A meek context allows dereferencing or deproceduring to a value of mode INT or
BOOL. The other coercions simply do not apply in these contexts.

Weak contexts

(a) Primaries of slices
(b) Secondaries of selections
(c) Right-hand side tertiary of a stowed-function
A weak context allows dereferencing all but the last reference, or deproceduring. Al-

lowing full dereferencing would forbid assignation to a row element. The other coer-
cions do not apply in a weak context.

Soft contexts

(a) The destination tertiary of assignations
(b) One tertiary in an identity-relation, as to adapt it to the other tertiary.
The soft context only allows deproceduring. Allowing dereferencing would mean that

you could not assign to a REF REF name. The other coercions do not apply in a soft
context.

INFORMAL INTRODUCTION TO ALGOL 68

6.5 Coercions

There are six coercions in Algol 68:

1. deproceduring or dereferencing
uniting
widening

rowing

AN

voiding

These coercions can be chained top-to-bottom, as far as the context allows them. For exam-
ple, first a sequence of deprocedurings or dereferencings may take place, then optionally
uniting, then a possibly a sequence of widenings, after that if needed rowing and finally
voiding can take place. So, for example, one can coerce INT to [] REAL, but one cannot
coerce REF INT to REF REAL and one cannot coerce [] INT to [] REAL. At first sight,
when a value will be voidened, all coercions before voiding seem unnecessary, but this sec-
tion will show how to resolve the problem of voiding a VOID routine without parameters:
whether to voiden by calling it or by discarding it.

6.5.1 Deproceduring or dereferencing

Deproceduring is the mechanism by which a parameter-less procedure is called. For exam-
ple, a procedure having mode PROC REAL, when called yields a REAL. One can represent
the coercion by:

PROC REAL — REAL

The coercion can be applied repeatedly, for instance:
PROC PROC REAL — PROC REAL — REAL

Deproceduring only occurs with parameter-less procedures, and only if the context requires
an object of the mode of the yield of the procedure in question.

Dereferencing is the process of moving from a name to the value to which it refers. That
value can again be a name. For example, if we dereference REF REAL, the coercion can be
represented by:

REF REAL — REAL

As deproceduring, dereferencing can be applied repeatedly to produce for instance:

REF REF REAL — REF REAL — REAL

115

LEARNING ALGOL 68 GENIE

Dereferencing in a weak context is a variant of the dereferencing coercion in which any
number of REFs can be removed except the final one. This can be represented by:

REF REF REAL — REF REAL

This coercion is only available in weak contexts and is needed in the primary of slices
and the secondary of a selection to ensure that a slice or selection can yield a name —
without this you would not be able to assign a value to an element of a row or to a field of
a structure.

In strong, firm, meek and weak contexts dereferencing and deproceduring will be applied
alternately if this leads of coercion of the source mode to the mode required by the context.
For instance, in strong, firm and meek contexts we could have:

REF PROC REF REAL — PROC REF REAL — REF REAL — REAL
though in a weak context we would have:

REF PROC REF [] REAL — PROC REF [] REAL — REF [] REAL

6.5.2 Uniting

In this coercion, the mode of a value becomes a united mode. For example, if I were an
operator with both operands of mode UNION (INT, REAL), then in the formula:

0 I pi

both operands will be united to UNION (INT, REAL) before the operator is elaborated.
These coercions can be represented by:

INT

— UNION (INT, REAL)
REAL

Uniting is available in firm contexts and also in strong contexts where it precedes rowing.

6.5.3 Widening

In a strong context, an integral value can be replaced by a real value and a real value re-
placed by a complex value, depending on the mode required. a68g implements next widen-
ings:

1. INT — REAL

2. INT — LONG INT

116

INFORMAL INTRODUCTION TO ALGOL 68

3. LONG INT — LONG REAL

4. LONG INT — LONG LONG INT

5. LONG LONG INT — LONG LONG REAL
6. REAL — COMPLEX

7. REAL — LONG REAL

8. LONG REAL — LONG COMPLEX

9. LONG REAL — LONG LONG REAL

10. LONG LONG REAL — LONG LONG COMPLEX
11. COMPLEX — LONG COMPLEX

12. LONG COMPLEX — LONG LONG COMPLEX
13. BITS — LONG BITS

14. LONG BITS — LONG LONG BITS

15. BITS — [] BOOL

16. LONG BITS — [] BOOL

17. LONG LONG BITS — [] BOOL

18. BYTES — [] CHAR

19. LONG BYTES — [] CHAR

Widening can be repeated, for example
INT — REAL — LONG REAL — LONG COMPLEX
Widening is not available in formulas since operands are in a firm context. In a firm

context, widening would lead to for instance not being able to write an operator for addition
of INT operands when one for REAL operands also exists.

6.5.4 Rowing

In a strong context, a row can be constructed. The resulting row or added dimension always
has one element with bounds 1 : 1. There are two cases to consider:

117

LEARNING ALGOL 68 GENIE

1. Suppose we want to row an element of mode SOME to a row [] SOME. For example, if
the required mode is [] INT, then the mode of an element is INT. In the identity-
declaration:

[] INT i = 0
the value yielded by the right-hand side will be rowed and the coercion can be ex-
pressed as:
INT — [] INT
If the value given is a row mode, such as [] INT,then there are two possible rowings:
(@ [] INT— [][] INT,or
(b) [] INT — [,] INT

(an extra dimension is added to the row)

2. If the row required is a name, then a name can be rowed. For example, if the value

supplied is a name with mode REF SOME, then a name with mode REF [] SOME
will be created. Likewise, a name of mode REF [] SOME can be rowed to a name
with mode REF [,] SOME or with mode REF [][] SOME, depending on the mode
required.

6.5.5 Voiding

In a strong context, a value can be discarded, either because the mode VOID is explicitly
stated, as in a procedure yielding VOID, or because the context demands it, as in the case
of a semicolon-symbol (the go-on-symbol). Voiding can be applied to any value that
is not a (variable whose value is a) parameter-less routine. A parameter-less routine is
deprocedured and if it is not a PROC vOID the value after deproceduring is discarded.
To avoid unexpected behaviour, deproceduring is not used to coerce an assignation, a
generator or a cast to VOID. Hence if we consider:

PROC p = VOID: ...;

PROC VOID pp;

pp = ps

then voiding the assignation pp := p does not involve deproceduring p after the assig-

nation is completed.

118

Transput

7.1 Transput

Transput means input and output. At various points in this publication we have been
reading data from standard input and writing data to standard output. These normally
are your keyboard and screen, respectively. This chapter addresses the means whereby an
Algol 68 program can obtain data from other devices and send data to devices other than
the screen. Data transfer is called input-output in many other languages, but in Algol 68
it is called transput. We will use this term as a verb: we will use to transput meaning to
perform input or output. This chapter describes transput as implemented by a68g. Though
a68g transput preserves many characteristics of Algol 68 transput, there are differences.
According to the Revised Report, Algol 68 discriminates files and books. A file described how
to handle a book that represented a dataset having pages and lines, which in the 1970’s was
a convenient way to view data. Consider for instance a deck of punch cards as a dataset of
as many lines as there are cards or a line printer as a dataset with pages and lines, or disk
files organised as records of fixed or variable width. This way of viewing files has changed
with Unix/Linux: here an important concept is a generalised mechanism for accessing a
wide range of resources that are called files: documents, directories, devices, processes,
network communications et cetera. This fundamental concept actually is twofold:

1. Every file is a stream of bytes.

2. The file system is a universal name-space.

Since a68g is developed for Unix/Linux we will not talk about books with pages and lines
which is a deliberate deviation of the Revised Report. In a68g, we have files that are se-
quences of bytes!. An object of mode FILE is a file descriptor as in many other contem-
porary programming languages. As in Algol 68, a68g transput is event-driven. One can
at forehand specify actions to be taken when certain events occur during transput. This
relieves you of continuously checking all kind of conditions when reading or writing (such
as: did you encounter end of file, can you actually write to this file, did a conversion error
take place, et cetera). We shall be examining later the kinds of event that can occur during
transput.

IFile size is not necessarily limited, think for example of /dev/null.

119

LEARNING ALGOL 68 GENIE

7.2 Channels and files

Files have various properties. They usually have an identification string, the simplest ex-
ample of which is a file name. Some files are read-only, some files are write-only and others
permit both reading and writing. Some files allow you to browse, that is, they allow you
to start anywhere in the file and read (or write) from that point on. a68g keeps track of
the status of a file by means of a complicated structure of mode FILE which is declared in
the standard prelude. There are four names of mode REF FILE declared in the standard
prelude:

1) stand in is the standard input (normally the keyboard),
2) stand out is the standard output (normally a screen),
3) stand error is the standard error channel (normally a screen), and

4) stand back is a file that can both be read and written.

One cannot read from stand out or stand error, nor write to stand in. a68g opens
above files at the start of the program. You normally have no need to close one of this
standard files. A file is associated with a channel. In the early days of Algol 68 channels
could be considered as a description of a device-driver, but nowadays such details are ab-
stracted in the kernel. They are maintained in a68g since they specify access rights to a
file and specify whether a file is used for drawing. The mode of a channel is CHANNEL which
is declared in the standard prelude. In a68g, five principal channels are provided in the
standard prelude:

1) stand in channel,

2) stand out channel,

3) stand error channel,
4) stand back channel and

5) stand draw channel.

The first is used for read-only files, the second and third are used for write-only files, and
the fourth for files which permit both reading and writing. The fifth does not allow for
reading and writing, but specifies that a file is used as a plotting device; it comes close to
the device-driver specification mentioned earlier. The first four channels mentioned above
are buffered.

120

INFORMAL INTRODUCTION TO ALGOL 68

7.3 United modes as arguments

One can now explain the parameters for print and read that accept parameters with
all the modes needed. These routines takes as parameter a row of a united mode as in the
two following declarations:

PROC print = ([] SIMPLOUT) VOID;

MODE SIMPLOUT = UNION (
INT, REAL, BOOL, CHAR,
[] INT, [] REAL, [] BOOL, [] CHAR,
[,] INT, [,] REAL, [,] BOOL, [,] CHAR,

),
PROC read = ([] SIMPLIN) VOID;

MODE SIMPLIN = UNION (
REF INT, REF REAL, REF BOOL, REF CHAR,
REF [] INT, REF [] REAL, REF [] BOOL, REF [] CHAR,
REF [,] INT, REF [,] REAL, REF [,] BOOL, REF [,] CHAR,

),
The mode SIMPLIN used by read is united from modes of names. Actually, the modes
SIMPLOUT and SIMPLIN are more complicated than this (see chapters 9 and 11). To demon-

strate the uniting coercion in a call of print, consider next example. If a has mode REF
INT, b has mode [] CHAR and c has mode PROC REAL, then the call:

print ((a, b, c))

causes the following to happen:

1. ais dereferenced to mode INT and then united to mode SIMPLOUT.

2. b is united to mode STMPLOUT.

3. cisdeprocedured to produce a value of mode REAL and then united to mode SIMPLOUT.
4. The three elements are regarded as a row-display for a [] SIMPLOUT.

5. print is called with its single parameter.

print uses a conformity-clause (see next section) to extract the actual value from each
element in the row. A curiosity is that although read and print take a united argument,
one cannot read a united value, since united modes do not introduce new values. You have

121

LEARNING ALGOL 68 GENIE

to read a value of a constituent mode, which requires that the united value is initialised
before read is attempted. For example, next code fails:

UNION (INT, REAL) number;
read (number);

An attempt at execution generates a runtime error:

2 read (number);

1
a68g: runtime error: 1l: attempt to use uninitialised
UNION (REAL, INT) value (detected in particular-program).

since at the time of the call to read, it is not yet known whether number holds an INT or
a REAL. This can be arranged for instance by initialising number:

UNION (INT, REAL) number := 0.0;
read (number);

after which read will expect a REAL value from standin.

7.4 Transput and scope

Please note that it is rather easy to provoke a scope error in transput routines. As men-
tioned in section 2.11, the scope of a local name is the smallest enclosing clause which
contains its generator (which may be hidden by an abbreviated variable-declaration)
and the scope of a global name extends to the whole program. Some transput routines
take a name, routine or format (vide infra) as argument, storing them in objects of mode
FILE or CHANNEL. You must take care that these values still exist when you address such
stored value in a later part of the program. For example, when you run next program:

FILE z;
STRING name = "test.data";

IF file is regular (name)

THEN VOID (open (z, name, standin channel))
ELSE associate (z, LOC STRING := "1")

FI;

INT k;
get (z, k);
print (k)

you will get next diagnostic in case file test .data does not exist:

122

INFORMAL INTRODUCTION TO ALGOL 68

6 ELSE associate (z, LOC STRING := "1")
1
a68g: runtime error: 1: REF STRING value is exported out of its scope
no such file or directory) (detected in VOID conditional-clause starting
at "IF" in line 4).

The reason for this error is that a68g detects that LOC STRING may cease to exist before
z ceases to exist. One can solve this for instance by writing HEAP STRING.

7.5 Reading files

Before one can read the contents of an existing file, you need to open the file. The declara-
tion of the procedure open starts with:

PROC open = (REF FILE f, STRING idf, CHANNEL chan) INT

On Linux, the routine yields zero if the file is a regular file and non-zero otherwise. Exam-
ple:

FILE inf;

STRING name = "results";

IF open (inf, name, stand in channel) /= 0

THEN print (("Cannot open ", results, new line))
FI

After a file has been opened, data can be read using the procedure get , the declaration
of which starts with:

PROC get = (REF FILE f£,
[] UNION (INTYPE, PROC (REF FILE) VOID) items) VOID

The mode INTYPE is a united mode defined by the Revised Report {2517.3.2.2} and encom-
passes all modes that can be read. INTYPE is processed by a process called straightening
that converts any structure or row into a row of values of the constituent fields or elements.
Allowed modes for latter elements in a68g are specified by the mode SIMPLIN :

MODE SIMPLIN = UNION (
REF INT, REF REAL, REF COMPLEX,
REF LONG INT, REF LONG REAL, REF LONG COMPLEX,
REF LONG LONG INT, REF LONG LONG REAL, REF LONG LONG COMPLEX,
REF BOOL,
REF BITS, REF LONG BITS, REF LONG LONG BITS,

123

LEARNING ALGOL 68 GENIE

REF CHAR, REF [] CHAR
)

This means that get can read directly any structure or row (or even rows of structures or
rows) as long as its elements are in SIMPLIN. The PROC (REF FILE) VOID mode in []
UNION (INTYPE, PROC (REF FILE) VOID) lets you use routines like new page and
new line as parameters. The declaration of new line starts with:

PROC new line = (REF FILE f) VOID

and one can call it from get if you want. On input, the rest of the current line is skipped
and a new line is taken. The position in the file is at the start of the new line, just before the
first character of that line. Consider next program fragment which opens a file and then
reads the first line and makes a name of mode REF STRING to refer to it. After reading the
string, new line is called explicitly:

FILE inf;

open (inf, "file", stand in channel);
STRING line;

get (inf, line);

new line (inf)

This could equally well have been written:

FILE inf;

open (inf, "file", stand in channel);
STRING line;

get (inf, (1line, new line))

Of course one can declare own procedures with mode PROC (REF FILE) VOID. The pro-
cedure read which you have already encountered in this publication is declared as:

PROC read = ([] UNION (INTYPE, PROC (REF FILE) VOID) items) VOID
get (stand in, items)

in the standard prelude. As one can see, it gets data from stand in.

a68g offers two routines familiar from C and Pascal that determine whether we are at
the end of a line, or at the end of the file, while reading. Note that these routines are
complementary to the event routines discussed in 7.8.

PROC end of line = (REF FILE file) BOOL
PROC eoln = (REF FILE file) BOOL

This routine yields TRUE if the file pointer of file is at the end of a line. One can advance
the file pointer with get (file, new line) ornew line (file).

PROC end of file = (REF FILE file) BOOL

124

INFORMAL INTRODUCTION TO ALGOL 68

PROC eof = (REF FILE file) BOOL

This routine yields TRUE if the file pointer of £ile is at the end of the file. When you have
finished reading data from a file, you should close the file by calling the procedure close .
Its declaration starts with:

PROC close = (REF FILE f) VOID

7.6 Writing to files

One can use the establish procedure to create a new file. The declaration of establish
starts with:

PROC establish = (REF FILE f, STRING idf, CHANNEL chann) INT
This program fragment creates a new file called results:

FILE outf;

IF establish (outf, "results", stand out channel) /= 0
THEN print (("Cannot establish file", new line));

stop
FI

The procedure establish can fail if the disk you are writing to is full or you do not have
write access (in a network, for example) in which case it will return a non-zero value. The
procedure used to write data to a file is put . Its declaration starts with:

PROC put =
(REF FILE £, [] UNION (OUTTYPE, PROC (REF FILE) VOID) items) VOID

The mode OUTTYPE is a united mode defined by the Revised Report {25:0.3.2.2} and encom-
passes all modes that can be printed. Like INTYPE, OUTTYPE is processed by straightening
that converts any structure or row into a row of values of the constituent fields or elements.
Allowed modes for latter elements in a68g are specified by the mode SIMPLOUT :

MODE SIMPLOUT = UNION (
INT, REAL, COMPLEX,
LONG INT, LONG REAL, LONG COMPLEX,
LONG LONG INT, LONG LONG REAL, LONG LONG COMPLEX,

BOOL,
BITS, LONG BITS, LONG LONG BITS,
CHAR, [] CHAR

125

LEARNING ALGOL 68 GENIE

Again, a PROC (REF FILE) VOID routine as new line and new page can be used as
argument to put as in the following example:

FILE outf;
IF establish (outf, "newfile", stand out channel=) /= 0
THEN put (stand error, ("Cannot establish newfile"));
stop
ELSE put (outf, ("Data for newfile", new line));
close (outf)
FI

On output, the new line character is written to the file. new page behaves just like new
line except that a form feed character is searched for on input, and written on output.
When you have completed writing data to a file, you must close it with the procedure
close . This is particularly important when writing files because the channel is buffered
as explained above. Using close ensures that any remaining data in the buffer is flushed
to the file. The procedure print directs output to stand out :

print (("Your name", new line))
which is equivalent to:
put (stand out, ("Your name", new line))

The procedure write is synonymous with print.

7.7 String terminators

A useful feature available for reading data is being able to specify when the reading of a
string should terminate. Usually, this is set as the end of the line only. However, using the
procedure make term, the string terminator can be a single character or any one of a set
of characters. The declaration of make term starts with:

PROC make term = (REF FILE f, STRING term) VOID

so if you want to read a line word by word, defining a word as any sequence of non-space
characters, one can make the string terminator a space by writing:

make term (inf, blank)

because blank (synonymous with " ") is rowed in the strong context of a parameter to
[1 CHAR. This will not remove the end-of-line as a terminator because the character 1f is
always added whatever characters you specify. You should remember that when a string
is read, the string terminator is available for the next read — it has not been read by the
previous read. Note that in a68g it is possible to inquire about the terminator string of a
file by means of the routine:

126

INFORMAL INTRODUCTION TO ALGOL 68

PROC term = (REF FILE f) STRING

7.8 Events

The Revised Report implementation of Algol 68 transput is characterised by the use of
events. Events are for instance end of file, or a conversion error. For each event, a file has
a routine that is activated when its associated event occurs. a68g detects these events:

1. Reaching end of file.
Reaching end of line.
Reaching end of page.
Reaching end of format.
A file open error.

A value error.

A format error.

S A AT T

A transput error not caught by other events.

The default action when an event occurs depends on the event. For instance, end-of-line will
per default provoke that newline is called after which transput continues, while end-of-file
will provoke a runtime error. The default action can be replaced by a programmer-defined
action.

7.8.1 File end

When the end of a file is detected, the default action is to generate a runtime error. A
programmer-supplied action must be a procedure with mode PROC (REF FILE) BOOL
The yield of this procedure should be TRUE if some action has been taken to remedy the
end-of-file condition, in which case transput is resumed, or FALSE otherwise in which case
the default action will be taken.

The declaration of the procedure on logical file end starts with:

PROC on logical file end =
(REF FILE f, PROC (REF FILE) BOOL p) VOID

Algol 68 discerns {251(¢.3.1.3} a logical file end and a physical file end. In a68g this differ-
ence is not implemented and on file end, on logical file end and on physical

127

LEARNING ALGOL 68 GENIE

file end are the same procedures. Next program will display the contents of its text
input file and print a message at its end:

IF FILE inf; [] CHAR infn = "file";
open (inf, infn, stand in channel) /= 0

THEN put (stand error, ("Cannot open ", infn, new line));
stop

ELSE on logical file end
(inf, (REF FILE f) BOOL:
(write (("End of ", idf (f), new line));
close (f);
stop
)
)
STRING line;
DO get (inf, (line, new line));
write ((line, new line))
OD
FI

The anonymous procedure provided as the second parameter to on logical file end
prints an informative message and closes the file. Note also that the DO loop simply re-
peats the reading of a line until the 1ogical file end procedure is called by get. The
procedure idf is described in section 7.15. You should be careful if you do transput on
the parameter REF FILE f since you could get endless recursion in case such transput
provokes the same event that the routine tried to handle. Also, because the on logical
file end procedure stores its procedure parameter in its REF FILE parameter, you
should be cautious when using on logical file endin limited ranges since a scope er-
ror may result. Any unit yielding an object of mode PROC (REF FILE) BOOL in a strong
context is suitable as the second parameter of on logical file end. If you want to
reset the action to the default action, use the call :

on logical file end (f, (REF FILE) BOOL: FALSE)

7.8.2 Line end and page end

These events are caused when while reading, the end of line or end of page is encountered.
These conditions are events so one can provide a routine that for instance automatically
counts the number of lines or pages read. The procedures on line end and on page
end let you provide a procedure whose mode must be PROC (REF FILE) BOOL. If the
programmer-supplied routine yields TRUE, transput continues, otherwise a new line in
case of end of line, or new page in case of end of page, is executed and then transput
resumes. Be careful when reading strings, since end of line and end of page characters are

128

INFORMAL INTRODUCTION TO ALGOL 68

string terminators. If you provide a routine that mends the line - or page end, be sure to
call new line or new page before returning TRUE. In case of a default action, new line
or new page must be called explicitly, for instance in the read procedure, otherwise you
will read nothing but empty strings as you do not eliminate the terminator.

7.8.3 Format end

This event is caused when in formatted transput, the format gets exhausted. The procedure
on format end lets you provide a procedure of mode PROC (REF FILE) BOOL. If the
programmer-supplied routine yields TRUE, transput continues, otherwise the format that
just ended is restarted and then transput resumes.

7.8.4 Open error

This event is caused when a file cannot be opened as required. For instance, you want
to read a file that does not exist, or write to a read-only file. The procedure on open
error lets you provide a procedure whose mode must be PROC (REF FILE) BOOL. If the
programmer-supplied routine yields TRUE, the program continues, otherwise a runtime
error occurs.

7.8.5 Value error

This event is caused when transputting a value that is not a valid representation of the
mode of the object being transput. The procedure on value error lets the programmer
provide a procedure whose mode must be PROC (REF FILE) BOOL. If you do transput
on the file within the procedure ensure that a value error will not occur again. If the
programmer-supplied routine yields TRUE, transput continues, otherwise a runtime error
occurs.

7.8.6 Format error

This event is caused when an error occurs in a format, typically when patterns are pro-
vided without objects to transput. The procedure on format error lets the programmer
provide a procedure whose mode must be PROC (REF FILE) BOOL. If the programmer-
supplied routine yields TRUE, the program continues, otherwise a runtime error occurs.

7.8.7 Transput error

129

LEARNING ALGOL 68 GENIE

This event is caused when an error occurs in transput that is not covered by the other
events, typically conversion errors (value out of range et cetera). The procedure on transput
error lets the programmer provide a procedure whose mode must be PROC (REF FILE)
BOOL. If the programmer-supplied routine yields TRUE, the program continues, otherwise

a runtime error occurs.

7.9 Formatting routines

One of the problems of using the rather primitive facilities given so far for the output of
real and integer numbers is that although they allow numbers to be printed in columns,
the widths and precisions are fixed. It is necessary to have some means of controlling width
and precision of printed values. The procedures whole, fixed, float and real provide
these means. A specification of the routines in this section, as Algol 68 source code, is in
7.16.

The declaration of the procedure whole starts with:
PROC whole = (NUMBER v, INT width) STRING

and takes two parameters. The first is a real or integral value and the second is an integer
which tells whole the width of the output number. If you pass a real number to whole , it
calls the procedure fixed with parameters width and 0.

If width = 0, then the number is printed with the minimum possible width. A positive
value for width will give numbers preceded by a "+" if positive and a "-" if negative. A
negative value for width will provide a minus-sign for negative numbers but no plus-sign
for positive numbers and the width will be ABS width. Note that where the integer is
wider than the available space, the output field is filled with the character denoted by
error char (which is declared in the standard prelude as the asterisk (x)).

The declaration of the procedure fixed starts with:
PROC fixed = (NUMBER v, INT width, after) STRING

and takes three parameters. The first two are the same as those for whole and the third
specifies the number of decimal places required. The rules for width are the same as the
rules for width for whole.

When you want to print numbers in scientific format, you should use f1oat which takes
four parameters. Its declaration starts with:

PROC float = (NUMBER v, INT width, after, exp) STRING

The first three are the same as the parameters for fixed, while the fourth is the width
of the exponent field. Thus the call :

130

INFORMAL INTRODUCTION TO ALGOL 68

print (float (pi = 10, 8, 2, -2)

produces the output +3.14e 1. The parameter exp obeys the same rules, applied to the
exponent, as width.

a68g implements a further routine real for formatting reals in a way closely related to
float, declared as:

PROC real =
(NUMBER x, INT width, after, exp width, modifier) STRING

If modifier is a positive number, the resulting string will present x with its exponent a
multiple of modifier. If modifier = 1, the returned string is identical to that returned
by float. A common choice for modifier is 3 which returns the so-called engineers no-
tation of x. If modifier is zero or negative, the resulting string will present x with ABS
modifier digits before the point-symbol and its exponent adjusted accordingly; compare
this to Fortran nP syntax.

7.10 Straightening

The term straightening is the process whereby a compounded mode is separated into its
constituent modes, which are themselves straightened if required. For example, the mode:

STRUCT (INT a, CHAR b, UNION (REAL, STRING) u)

would be straightened into values of the following modes:

1. INT
2. CHAR

3. UNION (REAL, STRING)

The mode:
REF STRUCT (INT a, CHAR b, UNION (REAL, STRING) u)

would be straightened into a number of names having the modes:

1. REF INT
2. REF CHAR

3. REF UNION (REAL, STRING)

131

LEARNING ALGOL 68 GENIE

However, a value of mode COMPLEX is not straightened into two values both of mode REAL.
Also, any row is separated into its constituent elements. For example:

[l : 3] COMPLEX

will be straightened into three values of mode COMPLEX.

7.11 Default-format transput

In default-format transput, each primitive mode is written as follows:

1. CHAR
Output a character to the current position in the file.

2. [1 CHAR
Output all the constituent characters to the file.

3. BOOL
Output £1ip for TRUE or flop for FALSE to the file.

4. 1. BITS
Output £1ip for each set bit and £1op for each zero bit.

5. L. INT
Output the integer using the call :
whole (i, L int width + 1)
which will output the integral value in:
L int width + 1

6. L REAL
Output the real using the call :

float (r, L real width + L exp width + 4,
L real width - 1, L exp width + 1)

which will output the real value in:
L real width + L exp width + 4
positions preceded by a sign.

7. L COMPLEX
The complex value is output as two real numbers.

8. PROC (REF FILE) VOID
An 1f character is output if the routine is newline and an f f character if the routine
is new page. User-defined routines with this mode can be used.

132

INFORMAL INTRODUCTION TO ALGOL 68

In default-format transput, each primitive mode is read as follows:

1. REF CHAR
Characters c, c < blank are skipped and the first character c > blank is assigned
to the name. If a REF [] CHAR is given, then the above action occurs for each of the
required characters of the row.

2. REF STRING
All characters, including any control characters, are assigned to the name until any
character in the character set specified by the string term field of f is encountered
(but this is not read).

3. REF BOOL
The next non-white-space character is read and, if it is f1ip, TRUE is assigned, or if
it is flop, FALSE is assigned.

4. REF L BITS
The action for REF BOOL is repeated for each bit in the name.

5. REF L INT
White space is skipped until a sign or a digit is encountered. Reading of decimal
digits continues until a character which is not a decimal digit is encountered.

6. REF L REAL
A real number consists of 3 parts:
(a) an optional sign possibly followed by spaces
(b) an optional integral part
(c) a "." followed by a fractional part
(d) an optional exponent preceded by a character in the set "Ee". The exponent

may have a sign. Absence of a sign is taken to mean a positive exponent

7. REF L COMPLEX
Two real numbers are read from the file. The first number is regarded as the real
part and the second the imaginary part.

7.12 Formaited transput

Formatted transput gives the programmer a high degree of control over the transput of
values. If you program in Fortran or in C then the concept of formatted transput is not
strange to you. Algol 68 implements a similar mechanism but in its own orthogonal way.

A format is a description of how values should be transput. A format in Algol 68 is a value
of mode FORMAT . The standard prelude defines the mode FORMAT as a structure the fields

133

LEARNING ALGOL 68 GENIE

of which are inaccessible. One can have format identities, format variables, procedures
yielding formats et cetera. There are however no pre-defined operators for objects of mode
FORMAT. One can define them but since the fields are inaccessible there is little sense
in passing a format as operand. In a68g, formats behave like anonymous routines and
follow the scope rules of routine-texts. Formats are associated with files by including them
in the parameter-list of routines put £ and get £ . There are (of course) related routines
printf and readf that perform putf on standout, or getf on standin, respectively.
These routines have respective routine-specifications:

PROC putf = (REF FILE £, [] UNION (OUTTYPE,
PROC (REF FILE) VOID, FORMAT) items) VOID

PROC getf = (REF FILE £, [] UNION (INTYPE,
PROC (REF FILE) VOID, FORMAT) items) VOID

PROC printf =
([] UNION (OUTTYPE, PROC (REF FILE) VOID, FORMAT) items) VOID

PROC readf =
([] UNION (INTYPE, PROC (REF FILE) VOID, FORMAT) items) VOID

7.12.1 Format texts
In this section we will introduce formatted transput by describing the constituting con-
structs. In Fortran, a format is defined by a format statement like:

WRITE (6, 10) N, RESULT
10 FORMAT (/1X, ’'RESULT’, 1X, I3, ’'=', 1X, F9.5)

In Algol 68, a format has a pseudo denotation that is called a format-text, for instance:
$1, 1x, "Result", 1x, 2zd, "=", 1x, g (9.5)$
and you could write

FORMAT my format = $1, 1x, "Result", 1x, 2zd, "=", 1x, g (9.5)$;
FORMAT variable format := my format

but typically a format-text is used as a parameter to transput routines:
printf (($1, 1x, "Result", 1x, 2zd, "=", 1x, g (9.5)$, n, result))

A format-text has these general syntax elements:

¢ format text:
formatter {8.2} symbol, picture list, formatter {8.2} symbol.

134

INFORMAL INTRODUCTION TO ALGOL 68

¢ MARKER frame:
insertion option, replicator option, letter s {8.4} option, MARKER;

A format-text is a list of pictures; each picture representing an individual item to be
transput:

* picture:
insertion;
pattern;
collection;
replicator collection.

Before describing other elements, a replicator is a static or dynamic specification of how
often a subsequent construct should be repeated:

¢ replicator:
integral denotation;
letter n {8.4} symbol, meek integral enclosed clause {8.9.1}.

Examples of replicators are:

® 6 # Repeat six times #
*n (k + 1) # Repeat k + 1 times #

®* n (read int) # Repeat as many times as you type #

A replicator should not be less than zero. The Revised Report {25,7.3.4.1.dd} states that a
negative replicator should be treated as if it were zero, but a68g assumes that a negative
replicator means that something went wrong and will give a runtime error. A collection is
simply a way to group a list of pictures, typically used when a replicator must be applied
to it:

¢ collection:
open {8.2} symbol, picture list, close {8.2} symbol.

Insertions give you control over new lines, new pages, spaces forward, or lets you insert
string literals:

¢ insertion: insertion item list.

135

LEARNING ALGOL 68 GENIE

* insertion item:
replicator option, letter k {8.4} symbol;
performs as many spaces forward as its replicator indicates.
replicator option, letter 1 {8.4} symbol;
performs a new line; it calls new line.
replicator option, letter p {8.4} symbol;
performs a new page, it calls new page .
replicator option, letter x {8.4} symbol;
performs a space; it calls space .
replicator option, letter q {8.4} symbol;
performs a space; it calls space .
replicator option, row of character denotation.
Specifies a sequence of strings to be taken literally.

Examples:

* 20k
® 31"Answer"
* n (k + 1)x

® "Algol 68"

Using insertions, we can for instance draw a sine-curve to standard output:

INT n = 24;

FOR i TO n

DO REAL x = 2 % pi x (i - 0.5) / n;

printf ($1, n (40 — ROUND (30 * sin (x)))k, "x"$)
oD

Patterns specify how to:

1. transput a value of a standard mode.
2. direct transput depending on a boolean - or integer expression.

3. execute an embedded format.
a68g implements these patterns:

* pattern:
general pattern;
integral pattern;

136

INFORMAL INTRODUCTION TO ALGOL 68

real pattern;
complex pattern;
bits pattern;
string pattern;
boolean pattern;
choice pattern;

c style pattern;
format pattern.

These are standard Algol 68 patterns, except for the c-style-pattern, which is an a68g
extension.

7.12.2 C-style patterns

If you are a C or C++ programmer you will be familiar with C format string placehold-
ers. a68g offers a notation closely resembling C format string placeholders called c-style-
patterns. These are an extension to standard Algol 68 patterns. Applicable production
rules are:

c style pattern:
percent {8.2} symbol,
minus {8.2} symbol option,
plus {8.2} symbol option,
width option,
precision option,
c type.

width: replicator.
* precision: point {8.2} symbol, replicator.

e c type:
letter b {8.4} symbol,
letter c {8.4} symbol,
letter d {8.4} symbol,
letter e {8.4} symbol,
letter f {8.4} symbol,
letter g {8.4} symbol,
letter i {8.4} symbol,
letter o {8.4} symbol,
letter s {8.4} symbol,
letter x {8.4} symbol.

Example c-style-patterns are:

137

LEARNING ALGOL 68 GENIE

®* %$-80s

® %+23.15f

o\

d

® 3n(bits width)b
The minus-symbol specifies that the resulting string representation of the transput value
will be left-justified instead of right-justified. The plus-symbol specifies that a sign must
be printed for positive integer or real values. Width specifies the width of the string repre-
sentation of the transput value. If you omit width then a default value is chosen. Preci-
sion applies to real values; if you omit this field then a default value is chosen. Note that
fields which are not applicable to the mode of the value being transput are simply ignored;
no diagnostic will be issued. The letter c-type determines the mode of the transput value:

b binary transput of a value of mode 1. BITS.

c transput of a value of mode CHAR.

d transput of a value of mode . INT.

e transput of a value of mode I. REAL in scientific format.

f transput of a value of mode I. REAL in fixed format.

g transput of a value of mode I. REAL in e or £ format, whichever is more appropriate.

i transput of a value of mode . INT.

o octal transput of a value of mode L. BITS.

s transput of a value of mode [] CHAR or STRING.

x hexadecimal transput of a value of mode . BITS.
On reading a STRING or [] CHAR value, with omitted width field, string terminators as

set by make term are obeyed. If you specify width, then exactly that number of characters
is read, irrespective of terminators set by make term.

7.12.3 General patterns
The general-pattern performs transput following default formatting:

¢ general pattern:
letter g {8.4} symbol, strong row of integer enclosed clause {8.9.1};
letter h {8.4} symbol, strong row of integer enclosed clause {8.9.1};

138

INFORMAL INTRODUCTION TO ALGOL 68

"n_n

Any standard mode can be transput with "g" or "h" when the strong-row-of-integer-
enclosed-clause is absent; default formatting is used which is the formatting that default-
format routines read, get, out or print would apply. In case of an integer or real value to
transput, the length of the strong-row-of-integer determines the formatting to be applied.

In case of letter "g" we get:
e element (i).whole (..., 1i) iscalled.
* elements (i, 7). fixed (..., i, 7) iscalled.
* elements (i, J, k).float (..., i, 7, k) iscalled.

In case of letter "h" we always get scientific notation. Let K be 1 + the value exp with for
the length of the integer or real value to transput, then we have this behaviour for "h":

* element (i).real (..., i, i + K + 4, K, 3) is called. Since this gives i dec-
imals before the exponent is adjusted to be a multiple of 3, we get i + 1 digits in
engineers notation and the width is automatically adjusted.

* elements (i, j). real (..., i, i + K + 4, K, 7) is called. If you want to
print a number with exactly i decimals, you specify h (i, 1) and the width is au-
tomatically adjusted.

* elements (i, j, k).real (..., i, Jj, K, k) iscalled. This prints as much dig-
its as will fit in a width i, including § decimals, and the exponent is adjusted to be a
multiple of k.

* elements (i, j, k, 1).real (..., i, J, k, 1) is called. This gives you full
control of the routine real as no defaults are applied.

7.12.4 Integral patterns

An integral-pattern transputs integral values and consists of an optional sign-mould
that lets you decide how to transput a sign, followed by an integer-mould that specifies
how to transput each individual digit. We will meet elements here that are called frames:
"s", "z" and "d". Frame "s" means that the next frame will be suppressed, "z" means to print
a non-zero digit or a space otherwise, and "d" means to print a digit. Hence the sign-mould

determines how to put a sign, would you want one.

* integral pattern: sign mould option, integer mould.
¢ sign mould: integer mould option, sign.

* integer mould: digit marker sequence, insertion option.

139

LEARNING ALGOL 68 GENIE

¢ digit marker:
letter z frame;
letter d frame.

Frames + and - are sign-frames; + forces a sign to be put, but a — only puts a minus if the
number is negative. Example sign-moulds are:

o +

[

® zzz2-

o 37—
If you specify letter-z-frames before the sign "+" or "-" then the sign will shift left one
digit for every non-zero digit that is begin put. In a68g, when a sign is shifted in a sign-
mould, any character output by literal insertions in that sign-mould is replaced with a

space as well, starting from the first letter-z-frame until the sign is put. The insertions
let you put all kind of literals in between digits. For example:

® 4d # transputs 9 as "0009", error on negative #
® zzz-d # transputs -9 as " -9" #

® 3z-d # transputs -9 as " -9" #

e 3z","2z-d # transputs 100000 as " 100,000" #

® 3d"-"3d"-"4d # transputs 5551234567 as 555-123-4567 #

7.12.5 Real paiterns

A real-pattern follows the same logic as an integral-pattern. Sign-moulds are optional,
and the exponent-part is optional. The decimal-point-frame and the exponent-frame

e" are suppressible by preceding them with "s"; this can for instance be used to replace the
standard exponent character by an insertion of choice.

¢ real pattern:
sign mould option, integer mould option, letter s {8.4} symbol option, point
{8.2} symbol,
insertion option, integer mould, exponent frame option;
sign mould option, integer mould, letter s {8.4} symbol option, point {8.2}
symbol,
insertion option, integer mould option, exponent frame option;
sign mould option, integer mould, exponent frame;

140

INFORMAL INTRODUCTION TO ALGOL 68

¢ exponent frame:
letter s {8.4} symbol option, letter e {8.4} symbol, insertion option,
sign mould option, integer mould.

Examples:

® d.3d # transputs pi as "3.142" %
® d.3dez-d # transputs 0.3333 as "3.333e -1" #

® ds.","3dse"""z-d # transputs 0.3333 as "3,333"-1" #

7.12.6 Complex patterns

A complex-pattern consists of a real-pattern for the real part and a real-pattern for
the imaginary part of the value. The plus-i-times-frame "i" is suppressible and can thus
be replaced by an insertion.

¢ complex pattern:
real pattern, letter s {8.4} symbol option, letter i {8.4} symbol, insertion
option, real pattern.

Examples:

¢ —-d.3di-d.3d # transputs f.i. 0.000i-1.000 #

® —d.3dsi-d.3d, "j" # transputs f.i. 0.000-1.0007 #

7.12.7 Bits patterns

A bits-pattern has no sign-mould, since a BITS value is unsigned. In a68g the radix is
specified by a replicator by which it can be dynamic.

* bits pattern:
replicator, letter r {8.4} symbol, integer mould.

Examples:

® 2r7zd # binary 8-bit byte with trailing zero-bit suppression #

® 16r8d # hexadecimal 32 bit word #

141

LEARNING ALGOL 68 GENIE

7.12.8 String patterns

The string-pattern transputs an object of modes STRING, CHAR and [] CHAR. The letter-
a-frames can be suppressed.

¢ string-pattern: letter-a-frame-sequence, insertion-option.

Examples:
® printf (($7a$, "Algol68")) # prints "Algole8" #
® printf (($5a"-"2a$, "Algol68")) # prints "Algol-68" #
® printf (($5a2sa$, "Algol68")) # prints "Algol" #

7.12.9 Boolean patterns
The boolean-expression transputs a BOOL value.

* boolean pattern:
letter b {8.4} symbol;
letter b {8.4} symbol, open {8.2} symbol, row of character denotation,
comma {8.2} symbol, row of character denotation, close {8.2} symbol.

If you just want the standard "T" or "F" transput, do not specify the row-of-character-
denotations. If you do specify those, a boolean-pattern is the format-text equivalent of
a conditional-clause. Example:

® printf (Sb ("true", "not true")$, read bool)

7.12.10 Choice patterns

A choice-pattern transputs a row-of-character-denotation depending on an integral value.
It is the format-text equivalent of an case-clause.

¢ choice pattern:
letter c {8.4} symbol, open {8.2} symbol, row of character denotation list,
close {8.2} symbol.

Examples:

142

INFORMAL INTRODUCTION TO ALGOL 68

® printf (Sc ("one", "two", "three")$, read int)

The Revised Report specification of getting using an integral-choice-pattern has the
peculiarity that when two literals start with the same sequence of characters, the longer
literal should appear first in the list. a68g makes no such demand, and will select the
correct literal from the list whatever their order.

7.12.11 Format patterns
The format-pattern lets you dynamically choose the format you want to employ.

¢ format pattern:
letter f {8.4} symbol, meek format enclosed clause {8.9.1}.

This is an example where a format may be selected dynamically:
* £ (um | (INT): $g (0)$, (REAL): $g (0, 4)89)

The effect of a format-pattern is that is temporarily supersedes the active format for
the file at hand. When this temporary format ends, the original format continues without
invoking an format-end event.

7.13 Binary files

Files that are not meant to be read by you can be in a compact binary form. These files are
called binary files or unformatted files. Many large files will be stored in this form. Algol 68
allows you to read and write the same values to binary files as are allowed for text files.
The difference between transput on binary files is that instead of using the procedures put
and get , you use the procedures put bin and get bin . The modes accepted by these
procedures are identical with those accepted by put and get respectively. Values of mode
[] CHARorREF STRING can be written by put bin, and read by get bin, but note that
the string terminator set using the procedure make term is ignored — on binary output,
a68g first writes the number of characters that will be printed and consequently on binary
input, a68g first reads the number of characters that will be read. Note that the procedure
read binisequivalent to get bin (stand back, ...) andthe procedure write bin
is equivalent to put bin (standback, ...).

143

LEARNING ALGOL 68 GENIE

7.14 Using a string as a file

In a program, you may want to manipulate data in text format. Therefore you would need
to convert data to text, or vice versa. Program languages typically have routines for this.
Algol 68 transput routines also convert data to text, so it stands to reason to utilise those.
To enable this, Algol 68 allows a file to be associated with an object of mode STRING. You
associate a string with a files using the routine associate which is declared as:

PROC associate = (REF FILE, REF STRING) VOID

On putting, the string is dynamically lengthened and output is added at the end of the
string. Attempted getting outside the string provokes an end of file condition. When a file
that is associated with a string is reset, getting restarts from the start of the associated
string. Next code fragment illustrates the use of associate in transput:

[n] COMPL u, v;

code to give values to elements in u
FILE in, out,

STRING z;

convert data to text
associate (out, z);

putf (out, u);

close (out);

convert text to data
associate (in, z);

getf (in, v);

close (in);

Next to above standard approach, Algol 68 Genie offers procedures by which you can read
and write using a string instead of a file. These compound a series of calls to Algol 68
transput routines as in above example. These routines are described in section 10.14.7.

7.15 Other transput procedures

The declaration of the procedure idf starts with:
PROC idf = (REF FILE f) STRING

and yields the identification of the file handled by the file £. There are two other ways of
closing a file. One is scratch and the other is 1ock :

PROC scratch = (REF FILE f) VOID
PROC lock = (REF FILE f) VOID

144

INFORMAL INTRODUCTION TO ALGOL 68

The procedure scratch deletes the file once it is closed. It is often used with temporary
files. The procedure 1ock closes its file and then locks it so that it cannot be opened without
some system action. It is possible to reset, or rewind, a file, to let the next transput opera-
tion start from the beginning of a file. The procedure provided for this purpose is reset .
Its declaration starts with:

PROC reset = (REF FILE f) VOID

One possible use of this procedure is to output data to a file, then use reset followed by
get to read the data from the file. a68g allows the alternative spelling rewind. Whether
a file supports reset can be interrogated by using:

PROC reset possible = (REF FILE f) BOOL

This routine yields TRUE when f can be reset, or FALSE otherwise. a68g allows the alter-
native spelling rewind possible. In a68g there is also a procedure set that attempts to
set the file pointer to a position other than the beginning of the file as done by reset:

PROC set = (REF FILE f, INT n) INT

This routine deviates from the standard Algol 68 definition. In a68g, set attempts to move
the file pointer of £ by n character positions with respect to the current position. If the file
pointer would as a result of this move get outside the file, it is not changed and the routine
set by on file endis called. If this routine returns FALSE, and end-of-file runtime error
is produced. The routine returns an INT value representing system-dependent information
on this repositioning. Whether a file allows setting, can be interrogated with set possible:

PROC set possible = (REF FILE f) BOOL

which does what its name suggests — yield TRUE when £ can be set, or FALSE otherwise.
Related to set are the routines space and backspace :

PROC space = (REF FILE f) VOID

The procedure advances the file pointer in file £ by one character. It does not read or write
a blank.

PROC backspace = (REF FILE f) VOID

The procedure attempts to retract the file pointer in file £ by one character. It actually
executes

VOID (set (f, -1))

and thus is subject to the properties of the routine set.

145

LEARNING ALGOL 68 GENIE

7.16 Appendix. Formatting routines

Next listing is a specification of whole , fixed, float and real implemented by a68g. It
closely follows the Revised Report definition (251¢.3.2.1), that however does not define the
routine real.

Actual implementation also includes LONG and LONG LONG modes
MODE NUMBER = UNION (INT, REAL);
CHAR error char = "x";

REM is not the same as MOD
OP REM = (INT i, Jj) INT: (i - j = (i OVER 7)),
PRIO REM = 7;

PROC whole = (NUMBER v, INT width) STRING:
CASE v IN
(INT x):
(INT length := ABS width - (x < 0 OR width > 0 | 1 | 0),
INT n := ABS x;
IF width = 0 THEN
INT m := n; length := 0;

WHILE m OVERAB 10; length +:= 1; m /= 0
DO SKIP OD
FI;
STRING s := sub whole (n, length);
IF length = 0 OR char in string (error char, LOC INT, s)
THEN ABS width % error char

ELSE
(x <0 | "=" |: width > 0 | "+" | "") PLUSTO s;
(width /= 0 | (ABS width - UPB s) * " " PLUSTO s);
s
FI),
(REAL x): fixed (x, width, 0)
ESAC;
PROC fixed = (NUMBER v, INT width, after) STRING:
CASE v IN
(REAL x) :
IF INT length := ABS width - (x < 0 OR width > 0 | 1 | 0);

after >= 0 AND (length > after OR width = 0)
THEN REAL y = ABS x;
IF width = 0
THEN length := (after = 0 | 1 | 0);
WHILE y + .5 « .1 ~ after > 10 ~ length
DO length +:= 1 OD;

length +:= (after = 0 | 0 | after + 1)
FI;
STRING s := sub fixed (y, length, after);

IF NOT char in string (error char, LOC INT, s)

146

INFORMAL INTRODUCTION TO ALGOL 68

THEN (length > UPB s AND y < 1.0 | "O" PLUSTO s);
(x <0 | "=" |: width > 0 | "+" | "") PLUSTO s;
(width /= 0 | (ABS width - UPB s) = " " PLUSTO s);

s
ELIF after > O
THEN fixed (v, width, after - 1)
ELSE ABS width % error char

FI
ELSE ABS width * error char
FI,
(INT x): fixed (REAL(x), width, after)
ESAC;
PROC real = (NUMBER v, INT width, after, exp, modifier) STRING:
CASE v IN
(REAL x) :
IF INT before = ABS width - ABS exp -
(after /= 0 | after + 1 | 0) - 2;
INT mod aft := after;
SIGN before + SIGN after > 0
THEN STRING s, REAL y := ABS x, INT p := 0;

standardize (y, before, after, p);
IF modifier > 0
THEN WHILE p REM modifier = 0
DO y *:= 10;
p —:=1;
IF mod aft > 0
THEN mod aft -:=1
FI
OD
ELSE WHILE y < 10.0 © (- modifier - 1)
DO y *:= 10;
p —:=1;
IF mod aft > O
THEN mod aft -:=
FI
OD;
WHILE y > 10.0 © - modifier
DO y /:= 10;
p t:=1;

|
i

IF mod aft > 0
THEN mod aft +:= 1
FI
OD
FI;
s := fixed (SIGN x * vy,

SIGN width = (ABS width - ABS exp - 1), mod aft) +
"E" + whole (p, exp);
IF exp = 0 OR char in string (error char, LOC INT, s)
THEN float (x, width,

147

LEARNING ALGOL 68 GENIE

(mod aft /= 0 | mod aft - 1 | 0),
(exp > 0 | exp + 1 | exp — 1))

ELSE s
FI
ELSE ABS width * error char
FI,
(INT x): float (REAL(x), width, after, exp)
ESAC;
PROC float = (NUMBER v, INT width, after, exp) STRING:

real (v, width, after, exp, 1);

PROC sub whole = (NUMBER v, INT width) STRING:
CASE v IN
(INT x):
BEGIN STRING s, INT n := x;

WHILE dig char (n MOD 10) PLUSTO s;
n OVERAB 10; n /= 0

DO SKIP OD;
(UPB s > width | width = error char | s)
END
ESAC;
PROC sub fixed = (NUMBER v, INT width, after) STRING:
CASE v IN
(REAL x):
BEGIN STRING s, INT before := 0;
REAL y := x + .5 x .1 "~ after;
PROC choosedig = (REF REAL y) CHAR:
dig char ((INT c := ENTIER (y *:= 10.0);
(c>9 | c :=9); v —:=c; c));

WHILE y >= 10.0 ~ before DO before +:= 1 0OD;
y /:= 10.0 ~ before;

TO before DO s PLUSAB choose dig (y) OD;
(after > 0 | s PLUSAB ".");

TO after DO s PLUSAB choose dig (y) OD;

(UPB s > width | width * errorchar | s)

END
ESAC;
PROC standardize = (REF REAL y, INT before, after, REF INT p) VOID:
BEGIN
REAL g = 10.0 ~ before, REAL h := g * .1;
WHILE y >= g DOy *:= .1; p +:= 1 OD;
(y /= 0.0 | WHILE vy < h DO y %:= 10.0; p —-:= 1 OD);
(y + .5 % .1 ~ after >> g | y := h; p +:= 1)
END;
PROC dig char = (INT x) CHAR: "0123456789%abcdef" [x + 1];
SKIP

148

Context-free grammar

{There are writings which are lovable although ungrammatical,
and there are other writings which are extremely grammatical,

but are disgusting.
This is something that | cannot explain to superficial persons.
On Flowers and Women. Chang Ch'ao. }

8.1 Introduction

This chapter is a reference for Algol 68 Genie context-free syntax. The advantage of pre-
senting a context-free syntax is that the backbone of constructions can be explained briefly.
The disadvantage is that a context-free grammar cannot reject programs that are seman-
tically incorrect, for instance those that apply undeclared symbols. The two-level Algol 68
syntax is described in the Revised Report in Part IV. In this informal introduction to Al-
gol 68, a method from Van Wijngaarden is used to write context-free production rules that
is explained in section {1.3}.

8.2 Reserved symbols

Algol 68, like other programming languages, reserves several symbols. One cannot redefine
reserved uppercase symbols by declarations. Next symbols are reserved in a68g:

149

LEARNING ALGOL 68 GENIE

Symbol

andf symbol
andth symbol
assert symbol
assign symbol
at symbol
begin symbol
becomes symbol
bits symbol
bool symbol
bus symbol

by symbol
bytes symbol
case symbol
channel symbol
char symbol
class symbol
close symbol
code symbol
col symbol
comment symbol
complex symbol
compl symbol
diag symbol

do symbol
downto symbol
edoc symbol
elif symbol

else symbol
elsf symbol
empty symbol
end symbol
environ symbol
equals symbol
esac symbol
exit symbol
false symbol
file symbol

fi symbol

flex symbol
format symbol
formatter symbol
for symbol

150

Representation

ANDF
ANDTH
ASSERT
ASSIGN
AT
BEGIN

BITS
BOOL

]

BY
BYTES
CASE
CHANNEL
CHAR
CLASS

)

CODE
COL
COMMENT
COMPLEX
COMPL
DIAG

DO
DOWNTO
EDOC
ELIF
ELSE
ELSF
EMPTY
END
ENVIRON

ESAC
EXIT
FALSE
FILE
FI
FLEX
FORMAT
$

FOR

INFORMAL INTRODUCTION TO ALGOL 68

Symbol

from symbol
go symbol
goto symbol
heap symbol
if symbol

in symbol
int symbol
isnt symbol
is symbol

loc symbol
long symbol
mode symbol
new symbol
nil symbol
od symbol

of symbol

op symbol
open

orel symbol
orf symbol
ouse symbol
out symbol
par symbol
pipe symbol
pragmat symbol
prio symbol
proc symbol
real symbol
ref symbol
row symbol
sema symbol
short symbol
skip symbol
sound symbol
string symbol
struct symbol
sub symbol
thef symbol
then symbol
to symbol
trnsp symbol

Representation

FROM
GO
GOTO
HEAP
IF

IN
INT
ISNT
IS
LOC
LONG
MODE
NEW
NIL
oD
OF
OoP

(
OREL
ORF
OUSE
ouT
PAR
PIPE
PRAGMAT
PRIO
PROC
REAL
REF
ROW
SEMA
SHORT
SKIP
SOUND
STRING
STRUCT

[
THEF
THEN
TO
TRNSP

151

LEARNING ALGOL 68 GENIE

Symbol Representation
true symbol TRUE
underscore symbol _
union symbol UNION
until symbol UNTIL
void symbol VOID
while symbol WHILE
8.3 Digit symbols
o digit:

digit 0 symbol; digit 1 symbol; digit 2 symbol;

digit 3 symbol; digit 4 symbol; digit 5 symbol;

digit 6 symbol; digit 7 symbol; digit 8 symbol;

digit 9 symbol.
Symbol Representation Symbol Representation
digit 0 symbol 0 digit 5 symbol 5
digit 1 symbol 1 digit 6 symbol 6
digit 2 symbol 2 digit 7 symbol 7
digit 3 symbol 3 digit 8 symbol 8
digit 4 symbol 4 digit 9 symbol 9

8.4 Letter symbols

¢ Jetter:

152

letter a symbol; letter b symbol; letter ¢ symbol;
letter d symbol; letter e symbol; letter f symbol;
letter g symbol; letter h symbol; letter i symbol;
letter j symbol; letter k symbol; letter 1 symbol;
letter m symbol; letter n symbol; letter o symbol;
letter p symbol; letter q symbol; letter r symbol;
letter s symbol; letter t symbol; letter u symbol;
letter v symbol; letter w symbol; letter x symbol;
letter y symbol; letter z symbol.

INFORMAL INTRODUCTION TO ALGOL 68

Symbol Representation

letter a symbol a letter n symbol n
letter b symbol b letter o symbol 0

letter c symbol ¢ letter p symbol)
letter d symbol d letter q symbol q
letter e symbol e letter r symbol r

letter f symbol f letter s symbol S

letter g symbol g letter t symbol t

letter h symbol h letter u symbol u
letter i symbol i letter v symbol v
letter j symbol j letter w symbol w
letter k symbol k letter x symbol X
letter 1 symbol | letter y symbol y
letter m symbol m letter z symbol zZ

8.5 Bold letter symbols

* bold letter:

bold letter a symbol; bold letter b symbol;
bold letter ¢ symbol; bold letter d symbol;
bold letter e symbol; bold letter f symbol;
bold letter g symbol; bold letter h symbol;
bold letter i symbol; bold letter j symbol;
bold letter k symbol; bold letter 1 symbol;
bold letter m symbol; bold letter n symbol;
bold letter o symbol; bold letter p symbol;
bold letter q symbol; bold letter r symbol;
bold letter s symbol; bold letter t symbol;
bold letter u symbol; bold letter v symbol;
bold letter w symbol; bold letter x symbol;
bold letter y symbol; bold letter z symbol.

153

LEARNING ALGOL 68 GENIE

Symbol Representation Symbol Representation
bold letter a symbol A bold letter n symbol N
bold letter b symbol B bold letter o symbol (0]
bold letter ¢ symbol C bold letter p symbol P
bold letter d symbol D bold letter q symbol Q
bold letter e symbol E bold letter r symbol R
bold letter f symbol F bold letter s symbol S
bold letter g symbol G bold letter t symbol T
bold letter h symbol H bold letter u symbol U
bold letter i symbol I bold letter v symbol \Y
bold letter j symbol §) bold letter w symbol W
bold letter k symbol K bold letter x symbol X
bold letter 1 symbol L bold letter y symbol Y
bold letter m symbol M bold letter z symbol Z

8.6 Tags

Tags are the symbols for identifiers, mode-indicants and operators.

8.6.1 Mode indicant tags

* mode indicant:
bold letter {8.5};
mode indicant, bold letter {8.5};
mode indicant, underscore {8.2} symbol sequence, mode indicant.

8.6.2 Identifier tags

¢ identifier:
letter {8.4};
identifier, letter {8.4};
identifier, digit {8.3};
identifier, underscore {8.2} symbol sequence, identifier.

¢ label:
identifier, colon {8.2} symbol.

154

INFORMAL INTRODUCTION TO ALGOL 68

8.6.3 Operator tags
Note that white space cannot be written within an operator symbol.

* operator:
monadic operator;
dyadic operator.

* monadic operator:
bold operator;
monad, nomad option, becomes option.

¢ dyadic operator:
bold operator;
monad, nomad option, becomes option;
nomad, nomad option, becomes option.

* bold operator:
bold letter {8.5};
bold operator, bold letter {8.5};
bold operator, underscore {8.2} symbol sequence, bold operator.

* becomes:
becomes {8.2} symbol option;
assigns to {8.2} symbol option.

8.7 Particular program

A particular-program is the actual application, embedded in the standard environ.

¢ particular program:
label sequence option, enclosed clause {8.9.1}.

8.8 Clauses

Serial-clauses and enquiry-clauses describe how declarations and units are put in se-
quence. Algol 68 requires clauses to yield a value. As declarations yield no value, serial-
clauses and enquiry-clauses cannot end in a declaration. EXIT leaves a serial-clause,
yielding the value of the preceding unit. If the unit following EXIT would not be labelled,
it could never be reached. In a serial-clause there cannot be labelled-units before dec-
larations to prevent re-entering declarations once they have been executed.

155

LEARNING ALGOL 68 GENIE

¢ serial clause:
initialiser series option,
labelled unit series.

¢ labelled unit:
unit {8.9.5};
label, unit {8.9.5};
unit {8.9.5}, exit {8.2} symbol, label, unit {8.9.5}.

¢ initialiser:
unit {8.9.5};
declaration list.

¢ *phrase: declaration; unit {8.9.5}.

{An enquiry-clause yields a value to direct the conditional-clause, case-clause, conformity-
clause, while-part or until-part in a loop-clause. An enquiry-clause contains no la-

bels, so one cannot for instance jump back to the enquiry-clause at IF from the serial-
clause at THEN.}

* enquiry clause:
initialiser series option,
unit {8.9.5} series.

8.9 Units

Units are orthogonal; for instance an enclosed-clause can be an operand in a formula.
The constituent constructs of phrases are primaries, secondaries, tertiaries and units.
Units are arranged in this hierarchy:

unit

tertiary

secondary

|
primary
|

enclosed-clause

where each class includes the lower class. For example, all primaries are secondaries,
but not vice versa. This hierarchy of units prevents writing ambiguous programs; it spec-
ifies for example that:

156

INFORMAL INTRODUCTION TO ALGOL 68

((z) [(kK)1) = (((z)[(k)yl) + (1))
or that:
ref OF ori OF z :=: NIL

can only mean:

(ref OF (ori OF (z))) :=: (NIL)

8.9.1

Enclosed clauses

Enclosed-clauses provide structure for a particular-program. There are seven types of
enclosed-clause.

N o e

. The simplest is the closed-clause which consists of a serial-clause enclosed in

parentheses (or BEGIN and END).

Collateral-clauses are generally used as row-displays or structure displays: there
must be at least two units. The units are elaborated collaterally. This means that
the order is undefined and may well be in parallel.

. A parallel-clause {4.12} is a collateral-clause preceded by PAR. The constituent

units are executed in parallel.
The loop-clause {4.9}.
The conditional-clause {4.3}.
The case-clause {4.6}.

The conformity-clause {4.7}.

It should be noted that the enquiry-clause in a conditional-clause, case-clause or
loop-clause is in a meek context whatever the context of the clause. Thus, the context of
the clause is passed on only to the terminal unit in the THEN, ELSE, IN or OUT serial-
clauses.

¢ enclosed clause:

closed clause,
collateral clause,
parallel clause,

157

LEARNING ALGOL 68 GENIE

choice using boolean clause,

choice using integral clause,

choice using UNITED {15,.5} clause,
loop clause.

¢ closed clause:
begin {8.2} symbol, serial clause {8.8}, end {8.2} symbol.

¢ collateral clause:
begin {8.2} symbol, unit {8.9.5} list proper, end {8.2} symbol.

¢ *row display:
begin {8.2} symbol, unit {8.9.5} list proper option, end {8.2} symbol.

¢ *structure display: strong collateral clause.

In a parallel-clause {4.12} the elaboration of units can be synchronised using semaphores.
Section 4.12 discusses the a68g implementation of the parallel-clause.

parallel clause:
par {8.2} symbol, begin {8.2} symbol, unit {8.9.5} list, end {8.2} symbol.

* *conditional clause: choice using boolean clause.

* choice using boolean clause:
if {8.2} symbol, meek boolean enquiry clause {8.8},
then {8.2} symbol, serial clause {8.8},
elif part option,
else part option,
fi {8.2} symbol.

¢ elif part:
elif {8.2} symbol, meek boolean enquiry clause {8.8},
then {8.2} symbol, serial clause {8.8},
elif part option.

¢ else part:
else {8.2} symbol, serial clause {8.8}.
* *case clause: choice using integral clause.

* choice using integral clause:
case {8.2} symbol, meek integral enquiry clause {8.8},
in {8.2} symbol, unit {8.9.5} list proper,

158

INFORMAL INTRODUCTION TO ALGOL 68

ouse part option,
out part option
esac {8.2} symbol.

ouse part:
ouse {8.2} symbol, meek integral enquiry clause {8.8},
in {8.2} symbol, unit {8.9.5} list proper,
ouse part option.

out part:
out {8.2} symbol, serial clause {8.8}.

*conformity clause: choice using UNITED {15,.5} clause.

choice using UNITED {15,.5} clause:
case {8.2} symbol, meek UNITED {15,.5} enquiry clause {8.8},
in {8.2} symbol, specified unit list,
conformity ouse part option,
out part option,
esac {8.2} symbol.

specified unit:

open {8.2} symbol, formal declarer {8.11}, identifier {8.6.2} option, close
{8.2} symbol, colon {8.2} symbol, unit {8.9.5}.

open {8.2} symbol, void {8.2} symbol, close {8.2} symbol, colon {8.2} symbol,
unit {8.9.5}.

conformity ouse part:
ouse {8.2} symbol, meek UNITED {15,.5} enquiry clause {8.8},
in {8.2} symbol, specified unit list,
conformity ouse part option.

loop clause:
for part option,
from part option,
by part option,
to part option,
while part option,
do part.

for part:
for {8.2} symbol, identifier {8.6.2}.

from part:
from {8.2} symbol, meek integral unit {8.9.5}.

159

LEARNING ALGOL 68 GENIE

* by part:
by {8.2} symbol, meek integral unit {8.9.5}.

¢ to part:
to {8.2} symbol, meek integral unit {8.9.5};
downto {8.2} symbol, meek integral unit {8.9.5}.

¢ while part:
while {8.2} symbol, meek boolean enquiry clause {8.8}.

¢ do part:
do {8.2} symbol, serial clause {8.8}, od {8.2} symbol;
do {8.2} symbol, serial clause {8.8} option, until part, od {8.2} symbol.

¢ until part:
until {8.2} symbol, meek boolean enquiry clause {8.8}.

8.9.2 Primaries

Primaries are denotations, applied-identifiers, casts, calls, format-texts, enclosed-
clauses and slices. Applied-identifiers are identifiers being used in a context, rather
than in their declarations where they are defining identifiers. Routine-texts are not
primaries, though format-texts are.

* primary:
enclosed clause {8.9.1},
identifier {8.6.2},
specification,
cast,
format text,
denotation.

* specification:
call,
slice,
field selection.

Calls were discussed in section 5.3. A call invokes a procedure, but can be partially pa-
rameterised: partial parameterisation adds arguments to a procedure ’s locale; when the
locale is complete the procedure is called, otherwise currying takes place. In section 6.4, it
was mentioned that the primary of a call is in a meek context. This applies even if the
call itself is in a strong context.

160

INFORMAL INTRODUCTION TO ALGOL 68

e call:
meek primary, open {8.2} symbol, actual parameter list, close {8.2} symbol.

* actual parameter:
strong unit {8.9.5} option.

A slice selects an element or a sub-row from a rowed value {3.3}. The context of the pri-
mary of the slice is weak. This means that if the primary yields a name, then the slice
will yield a name. Collateral-clauses used as row-displays can only be used in a strong
context. So if you want to slice a row-display, the row-display must be enclosed in a
cast. The context of units in subscripts and trimmers is meek.

¢ slice:
weak primary, sub {8.2} symbol, indexer list, bus {8.2} symbol.

¢ indexer:
subscript;
trimmer.

* trimmer:
lower index option,
colon {8.2} symbol,
upper index option,
revised lower bound option.

* subscript: meek integral unit {8.9.5}.
* lower index: meek integral unit {8.9.5}.
¢ upper index: meek integral unit {8.9.5}.
* revised lower bound:
at {8.2} symbol, meek integral unit {8.9.5}.

Field-selections are an a68g extension described in section 3.10.

¢ field selection:
weak primary, sub {8.2} symbol, identifier {8.6.2} list, bus {8.2} symbol.

* cast:
formal declarer {8.11}, strong enclosed clause {8.9.1}.

* denotation:
integral denotation;

161

LEARNING ALGOL 68 GENIE

real denotation;

boolean denotation;

bits denotation;

character denotation;

row of character denotation;
void denotation.

¢ integral denotation:
length {1.3} option, digit {8.3} sequence.

* real denotation:
length {1.3} option, digit {8.3} sequence, exponent part;
length {1.3} option, digit {8.3} sequence option, point {8.2} symbol,
digit {8.3} sequence, exponent part option.

* exponent part:
letter e {8.4} symbol, sign option, digit {8.3} sequence.

¢ boolean denotation:
true {8.2} symbol;
false {8.2} symbol.

* bits denotation:
length {1.3} option, bits digit {8.3} sequence;
bits digit {8.3} sequence

¢ character denotation:
quote {8.2} symbol, string item, quote {8.2} symbol.

* string item:
character;
quote {8.2} symbol, quote {8.2} symbol.

* row of character denotation:
quote {8.2} symbol, string item sequence, quote {8.2} symbol.

¢ void denotation:
empty {8.2} symbol.

8.9.2.1 Formats
Format-texts are discussed in section 7.12.

¢ format text:
formatter {8.2} symbol, picture list, formatter {8.2} symbol.

162

INFORMAL INTRODUCTION TO ALGOL 68

¢ replicator:
integral denotation;
letter n {8.4} symbol, meek integral enclosed clause {8.9.1}.

¢ MARKER frame:
insertion option, replicator option, letter s {8.4} option, MARKER;

* picture:
insertion;
pattern;
collection;
replicator collection.

¢ collection:
open {8.2} symbol, picture list, close {8.2} symbol.

¢ insertion: insertion item list.

* insertion item:
replicator option, letter k {8.4} symbol;
replicator option, letter 1 {8.4} symbol;
replicator option, letter p {8.4} symbol;
replicator option, letter x {8.4} symbol;
replicator option, letter ¢ {8.4} symbol;
replicator option, row of character denotation.

¢ pattern:
general pattern;
integral pattern;
real pattern;
complex pattern;
bits pattern;
string pattern;
boolean pattern;
choice pattern;
format pattern.
c style pattern.

¢ general pattern:
letter g {8.4} symbol, strong row of integer enclosed clause {8.9.1};
letter h {8.4} symbol, strong row of integer enclosed clause {8.9.1};

* integral pattern: sign mould option, integer mould.

¢ sign mould: integer mould option, sign.

163

LEARNING ALGOL 68 GENIE

164

integer mould: digit marker sequence, insertion option.

digit marker:
letter z frame;
letter d frame.

real pattern:
sign mould option, integer mould option, letter s {8.4} symbol option, point
{8.2} symbol,
insertion option, integer mould, exponent frame option;
sign mould option, integer mould, letter s {8.4} symbol option, point {8.2}
symbol,
insertion option, integer mould option, exponent frame option;
sign mould option, integer mould, exponent frame;

exponent frame:
letter s {8.4} symbol option, letter e {8.4} symbol, insertion option,
sign mould option, integer mould.

complex pattern:
real pattern, letter s {8.4} symbol option, letter i {8.4} symbol, insertion
option, real pattern.

complex pattern:
real pattern, letter s {8.4} symbol option, letter i {8.4} symbol, insertion
option, real pattern.

bits pattern:
replicator, letter r {8.4} symbol, integer mould.

string pattern: letter a frame sequence, insertion option.

boolean pattern:
letter b {8.4} symbol;
letter b {8.4} symbol, open {8.2} symbol, row of character denotation,
comma {8.2} symbol, row of character denotation, close {8.2} symbol.

choice pattern:
letter c {8.4} symbol, open {8.2} symbol, row of character denotation list,
close {8.2} symbol.

format pattern:
letter f {8.4} symbol, meek format enclosed clause {8.9.1}.

INFORMAL INTRODUCTION TO ALGOL 68

¢ ¢ style pattern:
percent {8.2} symbol,
minus {8.2} symbol option,
plus {8.2} symbol option,
width option,
precision option,
c type.

width: replicator.
* precision: point {8.2} symbol, replicator.

¢ c type:
letter b {8.4} symbol,
letter c {8.4} symbol,
letter d {8.4} symbol,
letter e {8.4} symbol,
letter f {8.4} symbol,
letter g {8.4} symbol,
letter i {8.4} symbol,
letter o {8.4} symbol,
letter s {8.4} symbol,
letter x {8.4} symbol.

8.9.3 Secondaries

* secondary:
primary {8.9.2};
selection;
generator.

Selections are described in section 3.9.
¢ selection: identifier {8.6.2}, of-symbol, secondary.
Generators are introduced in section 2.11.

¢ generator: qualifier, actual-declarer {8.11}.

165

LEARNING ALGOL 68 GENIE

8.9.4 Tertiaries

¢ tertiary:
secondary {8.9.3};
nihil;
formula;
stowed function.

NIL is introduced in section 2.12.
¢ nihil: nil {8.2} symbol.
Formulas are covered in section 2.6.

¢ formula:
monadic operator {8.6.3} sequence, monadic operand;
dyadic operand, dyadic operator {8.6.3}, dyadic operand.

* monadic operand:
secondary {8.9.3};

¢ dyadic operand:
monadic operator {8.6.3} sequence option, monadic operand;
formula.

¢ *operand: monadic operand; dyadic operand.
Stowed-functions are described in section 3.7.

¢ stowed function:
monadic stowed {8.2} symbol, weak tertiary,
meek integral tertiary, dyadic stowed {8.2} symbol, weak tertiary.

* monadic stowed {8.2} symbol:
diag {8.2} symbol, trnsp {8.2} symbol, row {8.2} symbol, col {8.2} symbol.

¢ dyadic stowed {8.2} symbol:
diag {8.2} symbol, row {8.2} symbol, col {8.2} symbol.

8.9.5 Units

* unit:
tertiary {8.9.4};

166

INFORMAL INTRODUCTION TO ALGOL 68

assignation;

routine text;
identity relation;
jump;

skip;

assertion;
conditional function;
code clause.

Assignations are discussed in section 2.11.
* assignation: soft tertiary {8.9.4}, becomes-symbol, strong-unit.
The identity-relation is introduced in section 4.5.
¢ identity relation:
soft tertiary {8.9.4}, is {8.2} symbol, soft tertiary {8.9.4};
soft tertiary {8.9.4}, isnt {8.2} symbol, soft tertiary {8.9.4};
For a description of jumps see 4.13.
¢ jump: goto {8.2} symbol option, identifier {8.6.2}.
{A skip is indicated by the reserved word SKIP . This construct terminates and yields an

undefined value of the mode required by the context, and can therefore only occur in a
strong context. It is particularly useful in cases were the result is undefined:

OP INVERSE = (MATRIX m) MATRIX:
IF DET m = 0 THEN SKIP ELSE ... FI

If the determinant of a matrix is zero, no unique inverse exists and the operator yields an
undefined matrix.}

¢ skip: skip {8.2} symbol.
Assertions are described in section 4.14.

¢ assertion: assert {8.2} symbol, meek boolean enclosed clause {8.9.1}.
Conditional-functions are discussed in {4.4}.

* conditional function:
meek boolean tertiary {8.9.4}, conditional {8.2} symbol, meek boolean ter-
tiary {8.9.4}.

167

LEARNING ALGOL 68 GENIE

* conditional {8.2} symbol:
thef {8.2} symbol; andf {8.2} symbol; andth {8.2} symbol;
elsf {8.2} symbol; orf {8.2} symbol; orel {8.2} symbol.

Routine-texts were discussed in chapter 5.

* routine text:
routine specification, colon {8.2} symbol, strong unit.

¢ routine specification:
parameter pack option, formal declarer {8.11}.
parameter pack option, void {8.2} symbol.

¢ parameter pack:
open {8.2} symbol, formal parameter list, close {8.2} symbol.

formal parameter: formal declarer {8.11}, identifier {8.6.2}.

{A code-clause is meant to directly insert C code into an object file generated by the plugin
compiler {9.1.1}. This construct yields a value of the mode required by the context, and can
therefore only occur in a strong context. The row-of-character-denotations are inserted
consecutively in the object file.}

¢ code clause:
code {8.2} symbol, row of character denotation list, edoc {8.2} symbol.

8.10 Declarations

Declarations introduce new tags, or specify the priority of an operator.

¢ declaration:
mode declaration;
identity declaration;
variable declaration;
procedure declaration;
procedure variable declaration;
operator declaration;
priority declaration.

* mode declaration:
mode {8.2} symbol, mode definition list.

168

INFORMAL INTRODUCTION TO ALGOL 68

mode definition:
mode indicant {8.6.1}, equals {8.2} symbol, actual declarer {8.11}.

identity declaration:
formal declarer {8.11}, identity definition list.

identity definition:
identifier {8.6.2}, equals {8.2} symbol, strong unit {8.9.5}.

variable declaration:
qualifier option, actual declarer {8.11}, variable definition list.

variable definition list:
identifier {8.6.2}, initialisation option.

initialisation: becomes {8.2} symbol, strong unit {8.9.5}.

procedure declaration:
proc {8.2} symbol, procedure definition list.

procedure definition: identifier {8.6.2}, equals {8.2} symbol, routine text.

procedure variable declaration:
qualifier option, proc {8.2} symbol, procedure variable definition list.

procedure variable definition: identifier {8.6.2}, becomes {8.2} symbol, rou-
tine text.

brief operator declaration:
operator {8.2} symbol, brief operator definition list.

brief operator definition list:
operator {8.6.3}, equals {8.2} symbol, routine text.

operator declaration:
operator plan, operator definition list.

operator plan:
operator {8.2} symbol, parameter pack, formal declarer {8.11}.

operator definition list:
operator {8.6.3}, equals {8.2} symbol, strong unit {8.9.5}.

169

LEARNING ALGOL 68 GENIE

* priority declaration:
prio {8.2} symbol, priority definition list.

¢ priority definition list:
operator {8.6.3}, equals {8.2} symbol, priority digit

* priority digit:
digit 1 symbol;
digit 2 symbol;
digit 3 symbol;
digit 4 symbol;
digit 5 symbol;
digit 6 symbol;
digit 7 symbol;
digit 8 symbol;
digit 9 symbol.

8.11 Declarers

Declarers specify modes. The context determines whether a mode is formal, virtual, or ac-
tual. Formal or virtual declarers are needed where the size of rows is irrelevant. Actual-
declarers are needed where the size of rows must be known, for instance when allocating
memory for rows.

¢ VICTAL: virtual; actual; formal.

e VICTAL declarer:

length {1.3} option, primitive declarer;

mode indicant;

ref {8.2} symbol, virtual declarer;

sub {8.2} symbol, VICTAL bounds list, bus {8.2} symbol, VICTAL declarer;

flex {8.2} symbol, sub {8.2} symbol, VICTAL bounds list, bus {8.2} symbol,

VICTAL declarer,

struct {8.2} symbol, open {8.2} symbol, VICTAL declarer identifier {8.6.2}
list, close {8.2} symbol;

union {8.2} symbol, open {8.2} symbol, united declarer list, close {8.2} sym-
bol;

proc {8.2} symbol, formal declarer pack option, formal declarer;

proc {8.2} symbol, formal declarer pack option, void {8.2} symbol.

¢ formal declarer pack:
open {8.2} symbol, formal declarer list, close {8.2} symbol.

170

INFORMAL INTRODUCTION TO ALGOL 68

¢ united declarer: formal declarer; void {8.2} symbol.

¢ formal bounds: colon {8.2} symbol option.

¢ virtual bounds: colon {8.2} symbol option.

¢ actual bounds: lower bound option, upper bound.

* lower bound: meek integral unit {8.9.5}, colon {8.2} symbol.

¢ upper bound: meek integral unit {8.9.5}.

8.12 Pragments

Pragments are either pragmats or comments {4.11}. In a68g, pragmats contain pre-
processor directives, or set options from within a program.

e pragment: pragmat; comment.

* pragmat:
pragmat {8.2} symbol, pragmat item sequence, pragmat {8.2} symbol.

* comment:
comment symbol character sequence comment {8.2} symbol.

8.13 Refinements

A low-level tool for top-down program construction is the refinement preprocessor. Re-
finements are not a part of Algol 68 syntax, but are superimposed on top of it. Note that
refinements interfere somewhat with labels.

¢ refined program: paragraph, point {8.2} symbol, refinement definition se-
quence.

¢ refinement definition: identifier {8.6.2}, colon {8.2} symbol, paragraph, point
{8.2} symbol.

e paragraph: character sequence.

171

LEARNING ALGOL 68 GENIE

8.14 Private production rules

a68g uses a number of private production rules. These are not used for the description of
syntax in this text. You may however encounter them in a68g diagnostics.

*if-part: if {8.2} symbol, meek boolean enquiry clause {8.8}.

*then-part: then {8.2} symbol, serial clause {8.8},

¢ *case-in-part: in {8.2} symbol, unit {8.9.5} list proper.

*conformity-in-part: in {8.2} symbol, specified unit {8.9.1} list.

172

I
Programming with Algol 68 Genie

]
Installing and using Algol 68 Genie

{Genie, noun.

A spirit from Arabian folklore, capable
of granting wishes when summoned.}

9.1 Algol 68 Genie

This chapter describes Algol 68 Genie, a hybrid compiler-interpreter; how to install it on
your computer system and how to use the program. Algol 68 Genie implements almost all
of Algol 68, and extends! that language. To run the programs described in this publication
you will need a computer with a Linux system or work-alike. Algol 68 Genie (a68g) is open
source software distributed under GNU GPL. This software is distributed in the hope that
it will be useful, but without any warranty. Consult the GNU General Public License?
for details. A copy of the license is in this publication.

An interpreter is a program that executes code written in a programming language. While
interpretation and compilation are the two principal means for implementing program-
ming languages, these are not fully distinct categories. An interpreter may be a program
that either (1) executes source code directly, (2) translates source code into some interme-
diate representation which is executed or (3) executes stored code from a compiler which is
part of the interpreter system. Perl, Python, MATLAB, and Ruby are examples of type (2),
while UCSD Pascal and Java and a68g> are type (3). After successful parsing of an entire
source program, a68g will interpret the syntax tree that serves as an intermediate pro-
gram representation. The unit compiler may construct routines by which Algol 68 Genie
can efficiently execute selected units. Algol 68 Genie employs a multi-pass scheme to parse
Algol 68 [Lindsey 1993] {9.9}. The interpreter proper performs many runtime checks®:

1. Assigning to, or dereferencing of, NIL .

1One can disable most extensions using the strict option, see section 9.6.4.
2See https://www.gnu.org/licenses/gpl.html.

3If you specify opt imise a68g is type (3), otherwise it is type (2).

4In this respect a68g resembles FLACC [Mailloux 1978].

175

https://www.gnu.org/licenses/gpl.html

LEARNING ALGOL 68 GENIE

2. Using uninitialised values.

3. Invalid operands to standard prelude operators and procedures.
4. Bounds check when manipulating rows.

5. Overflow of arithmetic modes.

6. Dangling references, that are names that refer to deallocated memory.

9.1.1 The Algol 68 Genie unit compiler

On Linux or compatible (with respect to the dynamic linking mechanism) operating sys-
tems, Algol 68 Genie can run in optimising mode, in which it employs a unit compiler that
emits C code for many units involving operations on primitive modes INT, REAL,BOOL,CHAR
and BITS and simple structures thereof such as COMPLEX. Execution time of such units
by interpretation is dominated by interpreter overhead, which makes compilation of these
units worthwhile. Generated C code is compiled and dynamically linked before it is exe-
cuted by Algol 68 Genie. Technically, the compiler synthesizes per selected unit efficient
routines compounding the elemental routines needed to execute terminals in the syntax
tree which allows for instance common sub-expression elimination. Generated C code is
compatible with the virtual stack-heap machine implemented by the interpreter proper,
hence generated code has full access to a68g’s runtime library and the interpreter’s de-
bugger. Note that this scheme involves ahead of time compilation, the unit compiler is not
a just in time compiler as used in for example Java implementations. The unit compiler
omits many runtime checks for the sake of efficiency. Therefore, it is recommended to not
specify option optimise or compile while your program is still in development, and to
use it only for programs that work correctly. Due to overhead, optimisation is not efficient
for programs with short execution times, or run-once programs typical for programming
course exercises. Your mileage will vary depending on your source code; expect a speed in-
crease ranging from hardly noticeable to ten times as fast. The unit compiler requires gcc
as back-end for code generation and the 1ibd1 library, as dynamic linker loader. If you use
the option compile to generate shell scripts from Algol 68 programs, also GNU tar and
sed are required. On platforms where the unit compiler cannot run, the Algol 68 Genie
interpreter executes the intermediate syntax-tree.

9.1.2 Features of Algol 68 Genie

1. Precision of numeric modes {2.3, 2.5, 3.12 and 3.13}:

(a) Implementation of LONG INT,LONG REAL,LONG COMPLEX and LONG BITS with
roughly doubled precision with respect to INT, REAL, COMPLEX and BITS.

176

PROGRAMMING WITH ALGOL 68 GENIE

10.

11.
12.
13.
14.

15.

16.

17.

(b) Implementation of multi-precision arithmetic through LONG LONG INT, LONG
LONG REAL,LONG LONG COMPLEX and LONG LONG BITS which are modes with
user defined precision which is set by an option.

On systems that support them, Linux extensions that allow e.g. for executing child
processes that communicate through pipes, matching regular expressions or fetching
web page contents, {10.18}.

Procedures for drawing using the GNU Plotting Utilities {10.18}.

Various extra numerical procedures, many of which from the GNU Scientific Library.

. Basic linear algebra and Fourier transform procedures from the GNU Scientific Li-

brary {10.10, 10.10 and 10.11}.
Support for WAVE/PCM sound format {10.23}.

Support for PostgreSQL, an open-source relational database management system,
enabling client applications in Algol 68 {10.22}.

. Format-texts, straightening and formatted transput. Transput routines work gener-

ically on files, (dynamic) strings and Unix pipes {7.12}.

. Parallel-clause on platforms that support Posix threads {4.12}.

Implementation of C.H. Lindsey’s partial parameterisation proposal, giving Algol 68
a functional sub language [Koster 1996] {5.10}.

A simple refinement preprocessor to facilitate top-down program construction {9.7.3}.
Symbol NEW as alternative for symbol HEAP.
Field-selections as alternative syntax for selections, see 3.10.

Implementation of pseudo-operators ANDF and ORF (or their respective alternatives
THEF, ANDTH and OREL, ELSF {4.4}.

Implementation of pseudo-operators TRNSP, DIAG, COL and ROW as described by [Tor-
rix 1977] {3.7}.

Implementation of DOWNTO with comparable function as TO in loop-clauses; DOWNTO
decreases, whereas TO increases, the loop counter by the value of the (implicit) by-
part {4.9}.

Implementation of a post-checked loop. A do-part may enclose a serial-clause fol-
lowed by an optional until-part, or just enclose an until-part. This is an alternative
to the paradigm Algol 68 post-check loop WHILE ... DO SKIP OD. An until-part
consists of the reserved word UNTIL followed by a meek-boolean-enquiry-clause. The
loop-clause terminates when the enquiry-clause yields TRUE {4.9}.

177

LEARNING ALGOL 68 GENIE

18.

19.

20.
21.

22.

Implementation of monadic- and dyadic-operator ELEMS that operate on any row.
The monadic-operator returns the total number of elements while the dyadic-
operator returns the number of elements in the specified dimension, if this is a
valid dimension {3.3}.

When option --brackets is specified, (...), [...] and {...} are equivalent to the
parser and any pair can be used where Algol 68 requires open-symbols and close-
symbols. This allows for clearer coding when parenthesis are nested. If brackets is
not specified, (...) is an alternative for [...] in bounds and indexers, which is
traditional Algol 68 syntax.

Implementation of operators SET and CLEAR for mode BITS.

The parser allows for colon-symbols, used in bounds and indexers, to be replaced
by .. which is the Pascal style.

Upper stropping is the default, quote stropping is optional.

9.1.3 Deviations from the Revised Report language

178

. The important difference with the Revised Report transput model is that Algol 68 Ge-

nie transput does not operate on FLEX [] FLEX [] FLEX [] CHAR, but on FLEX
[1 CHAR. This maps better onto operating systems as Unix or Linux.

. Algol 68 Genie does not initialise values to SKIP and uninitialised values provoke

a runtime error. This is believed to be a safe approach since many program errors
result from using uninitialised values.

The Algol 68 Genie parallel-clause deviates from the standard Algol 68 parallel-
clause {4.12} when parallel-clauses are nested. Algol 68 Genie’s parallel units be-
have like threads with private stacks. Hence if parallel units modify a shared vari-
able then this variable must be declared outside the outermost parallel-clause, and
a jump out of a parallel unit can only be targeted at a label outside the outermost
parallel-clause {4.12}.

It is not possible to declare in a [WHILE ...] DO ... [UNTIL ...] OD partan
identifier with equal spelling as the loop identifier.

If the context of a jump expects a parameter-less procedure of mode PROC VOID,
then a PROC VOID routine whose unit is that jump is yielded instead of making the
jump. In standard Algol 68, this proceduring will take place if the context expects a
parameter-less procedure, while Algol 68 Genie limits this to PROC VOID.

. Algol 68 Genie maps a declarer whose length is not implemented onto the most ap-

propriate length available {16,.1.3.1}. Algol 68 Genie considers mapped modes equiv-
alent to the modes they are mapped onto, while standard Algol 68 would still set them
apart. Routines or operators for not-implemented lengths are mapped accordingly.

PROGRAMMING WITH ALGOL 68 GENIE

7. At runtime, Algol 68 Genie does not make a copy of row parameters. Hence a proce-
dure body could contrive a way to alter the original row. This is an obvious trade-off
between efficiency of row handling and implementing the revised language to the
letter. ALGOL68RS had the same shortcoming, but not ALGOL68C .

9.1.4 Deviations from the proposed language extensions

1. Algol 68 Genie evaluates a routine once a value is obtained for all actual parameters.
It is therefore not possible to obtain a parameter-less procedure from a procedure
with a single parameter. Hence
REAL e = exp (1)
is obviously allowed, but
PROC REAL e = exp (1)
is not allowed.

9.2 Algol 68 Genie transput

a68g transput deviates from the Revised Report specification, as described below. For an
overview of implemented procedures refer to the standard prelude reference.

9.2.1 Features of Algol 68 Genie transput

1. Transput procedures operate generically on files, strings and Linux pipes.
2. Implementation of a procedure real that extends the functionality of float .

3. a68g implements ALGOL68C routines as read int and print int but not routines
as get int and put int.

4. There are two extra procedures to examine a file: idf and term.

5. If a file does not exist upon calling open, the default action will be to create it on the
file system.

6. If a file exists upon calling establish, the event handler set by on open error will be
invoked.

7. a68g can write to file stand error with associated channel stand error channel. This
file is linked to the standard error stream that is usually directed at the console.

8. Insertions can be any combination of alignments and literals.

179

LEARNING ALGOL 68 GENIE

10.
11.
12.
13.

. The argument for a general-pattern is an enclosed-clause yielding [] INT (which

is a superset of the Revised Report specification.

Extended general-pattern h for transputting real values.

The radix for a bits-pattern can be 2... 16. The radix can be dynamic.
Implementation of C-style format placeholders.

The Revised Report specification of getting using an integral-choice-pattern has
the peculiarity that when two literals start with the same sequence of characters, the
longer literal should appear first in the list. a68g makes no such demand, and will
select the correct literal from the list whatever their order in the list.

9.2.2 Deviations from standard Algol 68 transput

180

. The important difference with the Revised Report transput model is that a68g trans-

put does not operate on a FLEX [] FLEX [] FLEX [] CHAR, but on a FLEX []
CHAR. This maps better onto operating systems as Unix/Linux.

establish does not take arguments specifying the size of a file.

Getting and putting a file is essentially sequential. Only reset can intervene with
sequential processing.

a68g does not currently permit switching between read mood and write mood unless
the file is reset first (and the file was opened with standback channel). Whether
a file is in read mood or write mood is determined by the first actual transput opera-
tion (put or get) on a file after opening it.

Since a68g transput operates on a FLEX [] CHAR, routine associate is associates
a file to a REF STRING object. On putting, the string is dynamically lengthened and
output is added at the end of the string. Attempted getting outside the string pro-
vokes an end of file condition, and the event routine set by on file end isinvoked.
When a file that is associated with a string is reset, getting restarts from the start of
the associated string.

Since an end on file event handler cannot move the file pointer to a good position (re-
set also resets a file’s read mood and write mood), encountering end of file terminates
getting of a STRING value. Conform the Revised Report, getting of a STRING value
will resume if the end of line event handler or the end of page handler returns TRUE.

. There is no event routine on char error mended . Attempted conversion of an

invalid value for a required mode, or attempted transput of a value that cannot be
converted by the current format-pattern, evokes the event routine set by on value
error.

PROGRAMMING WITH ALGOL 68 GENIE

10.
11.

12.

13.

14.

93

. When all arguments in a call of readf , printf , writef , getf or putf are pro-

cessed, the format associated with the corresponding file is purged - that is, remain-
ing insertions are processed and the format is discarded. If a pattern is encountered
while purging, then there was no associated argument and the event routine set by
on format error is called. When this event routine returns FALSE (the default routine
always returns FALSE) a runtime error will be produced.

SIMPLIN and SIMPLOUT are generic for both formatted and unformatted transput.
Therefore SIMPLIN and SIMPLOUT include both mode FORMAT and PROC (REF FILE)
vO1ID. If a transput procedure encounters a value whose transput is not defined by
that procedure, a runtime error occurs.

Insertion x has the same effect as insertion g; both call space.

When a sign is shifted in a sign-mould, any character output by literal insertions
in that sign-mould is replaced with a space as well, starting from the first letter-z-
frame until the sign is put.

When printing using a pattern, a letter-z-frame behaves as a letter-d-frame once
a non-zero digit has been printed, and in a fractional part of a real number a letter-
z-frame always behaves as a letter-d-frame.

When getting a literal insertion, space is performed for every character in that lit-
eral. It is not checked whether read characters actually match the literal.

Routine set moves with respect to the current file pointer.

Installing Algol 68 Genie on Linux

On the internet you can find various pre-built binaries for Algol 68 Genie. If these do not
suit you, you can build the package yourself in the same way as other GNU packages. This
section describes into detail how to install a68g on a Linux system.

You will need to download the latest version of Algol 68 Genie from:
https://jmvdveer.home.xs4all.nl/

In this chapter we assume that the latest version is packed in a file called:

algol68g-3.5.14.tgz

which is a gzipped tar-archive.

181

https://jmvdveer.home.xs4all.nl/

LEARNING ALGOL 68 GENIE

9.3.1 Optional libraries

If installed on your system, a68g can use several libraries to extend its functionality. The
configure script checks for shared libraries and necessary includes. If necessary files are
not detected then a68g builds without support for absent libraries.

1. The quadmath library is needed for 128-bit floats.
Without quadmath, a 68 reverts to its own multiprecision library to implement 1.ONG
modes. The quadmath library comes with gcc. Therefore gcc is preferred for building
a68g, since for instance clang does not have this library. Note that FreeBSD disables
hardware support for 128-bit floats altogether.

2. GNU Scientific Library extends the a68g prelude.
On Debian, install the library like this:
sudo apt install libgsl-dev
See https://www.gnu.org/software/gsl/.

3. GNU plotutils allows drawing from Algol 68. Specifically, a68g links to the library

libplot.
See https://www.gnu.org/software/plotutils/.

On Debian, install 1ibplot like this:
sudo apt install libplot-dev

4. R mathlib provides support for many statistical routines. See https://www.r-project.org.

On Debian, install R mathlib like this:
sudo apt install r-mathlib

5. GNU MPFR provides extra LONG LONG REAL support, meant as reference material
for a68g development. See https://mpfr.org/.
Note that GNU MPFR needs GNU MP. On Debian, install both libraries like this:

sudo apt install libgmp-dev libmpfr-dev

6. PostgreSQL for writing PostgreSQL database client applications.
See https://www.postgresqgl.org/.

On Debian, install this library like this:
sudo apt install libpg-dev

7. The CURL library is needed for HTTPS client routines.
See https://curl.se/libcurl/.

On Debian, install this library like this:

sudo apt install libcurl-dev

182

https://www.gnu.org/software/gsl/
https://www.gnu.org/software/plotutils/
https://www.r-project.org
https://mpfr.org/
https://www.postgresql.org/
https://curl.se/libcurl/

PROGRAMMING WITH ALGOL 68 GENIE

9.3.2 Generic installation

Algol 68 Genie follows the GNU build system. The package will be configured automatically
for your platform by a configuration script, conveniently named configure. This script
generates a Makefile using autoconf and automake. The generated Makefile is used
by make to compile and install the package on your system. You will need some tools that
are present on most Linux systems. Note that Algol 68 Genie prefers gcc as C compiler.
For a generic installation, you can follow next instructions. For a customised build, follow
instructions in the file INSTALL in the distribution.

Step 1: Unpacking the distribution

Unpack the distribution by typing:

tar —xzf algol68g-3.5.14.tgz

Make the distribution directory the present working directory by typing:
cd algol68g-3.5.14

Step 2: Configuring

In the distribution directory type:

./configure

You will now see information scrolling by, like this:

configure: host system...
checking build system type... x86_64—-pc-linux—gnu

checking host system type... x86_64—pc—-linux—-gnu
checking target system type... x86_64—-pc—-linux—-gnu
checking platform... linux

configure: initialising...

configure: creating ./config.status

config.status: creating Makefile

config.status: creating a68g-config.h

config.status: a68g-config.h is unchanged

config.status: executing depfiles commands

configure:

configure: algol68g-3.3.1 by Marcel van der Veer <algol68g@xs4all.nl>
configure:

configure: C compiler is gcc

configure:

configure: building with hardware support for long modes
configure: building with parallel clause

configure: building with GNU MPFR

configure: building with R mathlib

configure: building with GNU Scientific Library

183

LEARNING ALGOL 68 GENIE

configure: building with curses

configure: building with GNU plotutils

configure: building with PostgreSQL

configure: building with WWW support

configure: building with curl

configure: building plugin compiler

configure:

configure: now type 'make’ optionally followed by ’'make check’ or 'make install’
configure: since a68g is already installed, 'make install’ is recommended
Now you have a Makefile, which will be used by make to build a68g.

The configure script accepts various options. For an overview of options, type:
./configure —--help

Some users will want to install in other directories than the default ones. To this end one
could for example specify:

./configure —--prefix=S$HOME
in case one would like to install in the home directory. The GNU build system and a68g
expect you to organise your file system in a specific manner - if you specify ——prefix=dir
targets for installation are:

® dir/bin for a68g,

® dir/include/algol68g for a68g.h and a68g-config.h,

* dir/share/man for the manual page a68g. 1.
The default GNU building system setting is ——prefix=/usr/local, hence default install
directories are:

® /usr/local/bin for a68g,

® /usr/local/include/algol68g for a68g.h and a68g-config.h,

® /usr/local/share/man for the manual page a68g.1.
The —-help option also lists configuration options specific for Algol 68 Genie:

1. enable-arch=cpu
If using gce, enable emitting architecture-tuned assembly code. (default is "no")

2. enable—-generic
This will build a68g with version 2 functionality. Version 2 was the last version pro-
viding variable LONG LONG BITS precision. Note that in a68g version 2, INT is a

184

PROGRAMMING WITH ALGOL 68 GENIE

10.

11.

12.

13.

14.

32-bit object, LONG modes are implemented in software, and some routines described
in this manual are not available.

enable-int-4-real-8
Enable 4-byte INT and 8-byte REAL. This is a fall-back for vintage platforms (default
is "no").

enable-int-8-real-16

If supported, enable 8-byte INT, 8-byte REAL and 16-byte LONG REAL. For instance,
1386 platforms already supports this option. This option takes precedence over "enable-
int-4-real-8" (default is "yes").

enable-compiler
Enable plugin compiler (default is "yes").

enable-mpfr
If installed, enable GNU MPFR (default is "yes").

enable—gsl
If installed, enable GNU Scientific Library (default is "yes").

enable-parallel

Enable Algol 68 parallel-clause (default is "yes").

enable-mathlib
If available, enable R mathlib library (default is "yes").

enable-pic=option
If using gcc, enable option to generate position-independent code (PIC). Absence of
PIC capabilities switches off the plugin compiler. (default is "-fPIC")

enable-curses
If available, enable curses library (default is "yes").

enable-plotutils
If installed, enable GNU plotting utilities (default is "yes").

enable-postgresqgl
If installed, enable PostgreSQL (default is "yes").

enable-readline
If available, enable readline library (default is "yes").

You do not need to specify those options; you can safely stick to the defaults. But if you
would want an interpreter-only version of a68g, you specify:

./configure —--enable-compiler=no

or, equivalently:

185

LEARNING ALGOL 68 GENIE

./configure —--disable-compiler

This disables the plugin compiler altogether. If you are not interested in Algol 68’s parallel-
clause {4.12}, you specify:

./configure —--disable-parallel
Step 3: Building

Now that you have a Makefile, type:
make

Again a lot of output will scroll by. You might see some inconsequential warning messages,
for instance on possible clobbering by 1ongjmp. When make finishes, the executable a68g
will be in the present working directory. To check that the executable is built correctly,

type:
make check

Again, output will scroll by which will look much like:

make check-TESTS
make[l]: Entering directory ‘./a68g’

All 179 tests behaved as expected (70 expected failures)

make[l]: Leaving directory ‘./a68g’

The final message is reassuring - you can install the executable. To install the executable,
include files and the manual page, you need write access to the direcory you want to install
in. If you specified for instance ——prefix=$HOME, you will have write-access, but if you
install in the default directory /usr/local, you have to be super-user, i.e. user root. To
install you type:

make install

To remove binaries used for building, type:
make clean

Finally, if you want to undo installation, type:
make uninstall

Step 4: Starting Algol 68 Genie

When you install a68g in the present working directory, you may want to include the
current directory in your PATH variable. Otherwise you will need to indicate the current

186

PROGRAMMING WITH ALGOL 68 GENIE

directory by typing . /a68g as in the following examples. On Linux you can expect:

$./a68g —--version
Algol 68 Genie 3.5.14
Copyright 2001-2025 Marcel van der Veer <algol68g@xs4all.nl>.

This is free software covered by the GNU General Public License.
There is ABSOLUTELY NO WARRANTY for Algol 68 Genie;

not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

Please report bugs to Marcel van der Veer <algolé68g@xs4all.nl>.

With hardware support for long modes
With plugin-compilation support
With parallel-clause support

With PostgreSQL support

With curl 7.88.1

With GNU MP 6.2.1

With GNU MPFR 4.2.0

With mathlib from R 4.2.2

With GNU Scientific Library 2.7.1
With GNU plotutils 4.4

With ncurses 6.4

GNU libc version glibc 2.36

GNU libpthread version NPTL 2.36
Build level 3.2224 gcc Mar 20 2025

If instead of above version statement you get a message as:

a68g: error in loading shared libraries
libgsl.so.0: cannot open shared object file:
No such file or directory

or:

psql: error in loading shared libraries
libpg.s0.5.2: cannot open shared object file:
No such file or directory

then your shared library search path was not properly set for the GNU Scientific Library
or PostgreSQLs 1ibpg library, respectively. The method to set the shared library search
path varies between platforms, but the most widely used method is to set the environment
variable LD_LIBRARY_PATH. In Bourne shells (sh, ksh, bash, zsh) you would use:

LD_LIBRARY_PATH=/usr/local/lib:/usr/local/pgsgl/lib:S$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

187

LEARNING ALGOL 68 GENIE

while in csh or tcsh you would use:

setenv LD_LIBRARY_PATH /usr/local/lib:/usr/local/pgsqgl/lib:S$LD_LIBRARY_PATH

You should put these commands into a shell start-up file such as:
/etc/profile, or
~/ .bash_profile.

When in doubt, refer to the manual pages of your system.

9.4 Synopsis

To start a68g from the command-line you would use:
a68g [options] filename

If 2689 cannot open filename, it will try opening with extensions .a68, .a68g, .algol68
or .algol68g respectively. Alternatively, under Linux an Algol 68 source file can be made
a script by entering:

#! [/usr/local/bin/]a68g [option]

as the first line in the script file. Note that shells as bash only pass a single option to a68g
in a script; other options can be entered on the command line. After making the script
executable by typing:

chmod +x filename
the script can be started from the command line by typing:
filename [options]

For compatibility with other Algol 68 implementations, a68g accepts that you terminate
the first line of a script with # as in:

#! [/usr/local/bin/]a68g [option] #

In this way, above line will appear to another implementation as a comment. If you want
to pass command line arguments to a script, you should use option -—script as in next
example:

$ cat my_script
#! ./a68g —--script #

FOR i TO a68g argc
DO printf (($1g(0)x""""g""""$, i, a68g argv(i)))

188

PROGRAMMING WITH ALGOL 68 GENIE

oD

$./my_script a b c
1 "./a68g"

2 " a n

3 "b A\

4 " c n

The first three arguments in above example are the typical action of a shell like bash. From
the fourth argument on, the actual command line arguments follow. Option —--script
prevents that these are processed as a68g options, and you can have your script handle
them as you see fit. Would you want to pass options to a68g using option —-script, these
have to be passed as pragmat-items.

For programs for which you expect a long run time, and that you consider fit to run without
many of the runtime checks that Algol 68 Genie offers, you can enable the unit compiler

by typing:

a68g ——optimise [options] filename
or alternatively,

a68g -0 [options] filename

After successful compilation you will have a file with name filename with its extension
changed for . so. Consider for example a program that will give you the Whetstone rating,
which is a vintage measure of floating-point performance of your platform and program-
ming language:

$./a68g whetstone.a68
0.49 20.5

which means that we needed 0.49 seconds giving a rating of 20.5 MWhets on this particular
platform. Now we try optimisation:

$./a68g -O whetstone.a68
0.05 220.0

showing that the unit compiler significantly improves the runtime of this program; this
because the Whetstone rating involves many basic operations on primitive modes, which
is the forte of the unit compiler. If you use the unit compiler, and wish to run a same
program another time without recompiling generated C code, you have two options:

1. One can request to skip the code generation and compilation phase by typing:
a68g —-rerun [options] filename

For example:

189

LEARNING ALGOL 68 GENIE

$./a68g —-rerun whetstone.a68
0.05 220.0

Note that a68g uses a time stamp to determine whether previously compiled code can
still be used. Even when using option rerun, a C file will be emitted, since Algol 68
Genie needs to reconstruct the names of the symbols to resolve.

On Linux, you can request a68g to build a shell script for your program by typing:
a68g ——-compile [options] filename

or, briefly

a68g —-c [options] filename

The shell script will be named filename stripped from its extension. One can in a
later stage run this shell script. For example:

$./a68g —c whetstone.a68
$./whetstone
0.05 220.0

Command line options passed to the script are not processed by a68g, but can be
processed by your script instead. Would you want to pass options to a68g using this
scheme, then these have to be passed as pragmat-items.

If you inspect the shell script you will find little intelligible information. The script
consists of a call to a68g followed by a compressed source code fork and compressed
binary fork. Thus the shell script can place diagnostics in the original source code,
also when the original source file is no longer available. The shell script checks
whether it executes the same a68g version that was used to build it. The shell script
is a pseudo-executable; it is independent of the original source file, but still depends
on a68g.

On Linux, Algol 68 Genie recognises below environment variables. If they are undefined,
a68g assumes default values for them:

A68G_STANDIN
The value will be the name of the file to which stand in will be redirected.

A68G_STANDOUT
The value will be the name of the file to which stand out will be redirected.

A68G_STANDERROR
The value will be the name of the file to which stand error will be redirected.

A68G_OPTIONS
The value will be tokenised and processed as options. These options will supersede options
set in file . a68grc (vide infra).

190

PROGRAMMING WITH ALGOL 68 GENIE

9.5 Diagnostics

This section discusses how a68g specifies its diagnostics. Algol 68 Genie checks for many
events and since some diagnostics are synthesized it is not possible to provide a finite list
of a68g’s diagnostics. Diagnostics would typically be presented like this:

7 REF [] INT g2 = p[3,1;

1 2
a68g: warning: 1: tag "g2" is not used (detected in VOID closed-clause
starting at "BEGIN" in line 1).
a68g: error: 2: attempt at storing a transient name (detected in VOID
closed—-clause starting at "BEGIN" in line 1).

If possible, a68g writes the offending line and indicates by means of single-digit markers
the positions where diagnostics have been issued. Note that the source of the error will
often only be near that marker. Then a list follows of diagnostics issued for that line. As is
usual in the Linux world, the first element of a diagnostic is the name of the program giving
the diagnostic, in casu a68g. If the error occurs in an included source file, the included
source file’s name will be the next element. If the source is contained in a single file then
the source file name is not stated. Then follows the marker that indicates the position in
the line where the diagnostic was issued. Finally a descriptive message is written.

In case a diagnostic is not related to a specific source line, the diagnostic looks simpler
since a source line and markers can be omitted, for instance:

$ a68g —--precision=1k —--heap=256G examples/mc.a68
a68g: error in option "—--heap=256g" (numerical result out of range).

which on a 32-bit platform suggests you probably wanted to specify ——heap=256M.

Diagnostics come in different levels of severity. A warning will not impede execution of a
program, but it will draw your attention to some issue; for instance:

106 ABS diff < 100 ANDF exp (— diff) > random
1
a68g: warning: 1: construct is an extension.

indicates that this phrase contains an extension (here, ANDF) so this program may not
be portable. Another example demonstrates that a68g will point out that an identifier
or indicant can hide a previous declaration of the same, which may lead to unexpected
results:

$./a68g hidden --warnings
1 INT term := 0, REAL pi := 355 / 113, k := 0;
1 2
a68g: warning: 1: declaration hides prelude declaration of
PROC (REF FILE) STRING "term".

191

LEARNING ALGOL 68 GENIE

a68g: warning: 2: declaration hides prelude declaration of REAL "pi".
2 IF REAL k := pi x term;
1
a68g: warning: 1: declaration hides a declaration of "k" with larger reach.

Since a warning does not impede execution, a68g suppresses many of them unless you
supply the -—warnings option at the command line. Some warnings cannot be suppressed,
for instance when a construct is most likely not what you intended, like implicitly voiding
a formula.

An error impedes successful compilation and execution of a program. Some condition was
encountered that you must fix before execution could take place. For instance:

2 IN (UNION (INT, BOOL)): SKIP,

1
a68g: error: 1l: UNION (BOOL, INT) is neither component nor subset of
UNION (CHAR, BOOL) (detected in conformity-clause starting at "CASE"
in line 1).

or:

38 matvec (1, 10, bool, ca, aa);

1
a68g: error: 1: REF BOOL cannot be coerced to INT in a
strong-argument (detected in closed-clause starting at " ("
in line 3).

obviously are errors that need fixing before successful compilation and execution.

A syntax error is given when an error has been made in syntax according to chapter 8.
Such diagnostic is typically issued by the parser. In case of a syntax error, a68g tries to
give additional information in an attempt to help you localising and diagnosing the exact
error. For instance, in:

103 CASE v

1
a68g: syntax error: 1l: incorrect parenthesis nesting; encountered
end-symbol in line 152 but expected esac-symbol; check for "END"
without matching "BEGIN" and "CASE" without matching "ESAC".

a case-clause was terminated with END so a68g straightforwardly suggests to check for a
missing BEGIN or a missing or misspelled ESAC. In next example:

317 OP * = (VEC,v REAL r) VEC: r * V;

1
a68g: syntax error: 1l: construct beginning with " (" in line 317
followed by a declarer and then ",", "v", a parameter-list, ")" is

not a valid parameter-pack.

192

PROGRAMMING WITH ALGOL 68 GENIE

the parser explains that it wanted to parse a parameter-pack but it could not complete
that since a declarer was followed by a comma-symbol. Clearly VEC, r should have been
written VEC r,. These synthetic explanations can get quite verbose, as in:

385 proc set pixel = (ICON i, PT p, COLOR c) VOID:

1
a68g: syntax error: 1l: construct beginning with a serial-clause
starting in line 5 followed by "=" in line 385 and then a
routine-text, ";" in line 386, "procsetpixelrgb" in line 387, "=", a
routine-text, ";" in line 388 et cetera is not a valid serial-clause.

which indicates that things looked all-right up to line 385, but then a serial-clause was
equated to a routine-text which is odd. You will be quick to note that a missing PROC symbol
was incorrectly spelled in lower-case, and the same will have happened in line 387.

When your program is being executed, a runtime error can occur indicating that some
condition arose that made continuation of execution either impossible or undesirable. A
typical example is:

8 CASE CASE n
1
a68g: runtime error: 1: REF [] INT value from united value is exported
out of its scope (detected in VOID conformity-clause starting at
"CASE" in this line).

but if any information can be obtained from runtime support about what went wrong, it
will be included in the diagnostic as in:

41 get (standin, (x, space, y, space, number, new line));
1

a68g: runtime error: 1l: cannot open ".txt" for getting (no such

file or directory) (detected in VOID loop-clause starting at "TO"

in line 38).

which means that the file name that you specified with open does not exist now that you
decided to read from it — it indeed seems you only wrote an extension. Note that you
can intercept a runtime error by specifying option ——monitor or ——debug by which the
monitor will be entered when a runtime error occurs, so you can inspect what went wrong
{9.8}.

a68g limits the number of diagnostics it issues, since it is believed that there is no point
in generating many diagnostics that might be related to an earlier one. Since a68g com-
piles in several passes, each traversing the source from begin to end, it is possible that
a diagnostic announcing suppression of further ones appears in the middle of other diag-
nostics. Also, to make diagnostics more intelligible, a68g attempts to substitute modes for
indicants that are declared for them. Therefore you could expect for a single program:

38 HEAP CALL := (name, parameter);

193

LEARNING ALGOL 68 GENIE

1

a68g: warning: 1l: REF FUNCTION value from identifier could be
exported out of its scope (detected in CALL collateral-clause
starting at " (" in this line).
41 HEAP FUNCTION := (bound wvar, body);

1
a68g: warning: 1: further warning diagnostics suppressed
(detected in FUNCTION collateral-clause starting at " (" in this
line).

199 is const (f)
1
a68g: warning: 1: construct is an extension.
208 THEN IF is const (f)
1
a68g: warning: 1: construct is an extension.
217 THEN make dyadic (g, times, f£f);

1
a68g: warning: 1l: skipped superfluous semi-symbol.

9.6 Options

Options are passed to a68g either from the file .a68grc in the working directory, the
environment variable:

A68G_OPTIONS

or the command-line, or through pragmats. Precedence is as follows: pragmats supersede
command-line options, command-line options supersede options from:

A68G_OPTIONS
that supersede options in:
.a68qgrc

Options have syntax —option [[=] value[suffix]]. Option names are not case sensitive,
but option arguments are. Note that option syntax is a superset of Linux standards since
a68g was initially written on other operating systems than Linux and had to maintain a
degree of compatibility with option syntax of all of them. Listing options, tracing options
and --pragmat, ——no-pragmat, take their effect when they are encountered in a left-to-
right pass of the program text, and can thus be used to generate a cross reference for a
particular part of the user program. In integral arguments, suffix k, M or G is accepted
to specify multiplication by 20, 220 or 23° respectively. The suffix is case-insensitive.

194

PROGRAMMING WITH ALGOL 68 GENIE

9.6.1 One-liners

e --print unit | -p unit

Prints value yielded by the specified Algol 68 unit. In this way a68g can execute one-liners
from the command-line. The one-liner is written in file .a68g. x in the working directory.

Example: a68g -p "sqgrt (2 * pi)"
¢ .-execute unit, -x unit

Executes specified Algol 68 unit. In this way a68g can execute one-liners from the command-
line. The one-liner is written in file . a68g. x in the working directory.

Example: a68g ——exec "printf (($1h$, 4 % atan (-1)))"

9.6.2 Memory size

Algol 68 relieves the programmer from managing memory, hence a68g manages allocation
and de-allocation of heap space. However, if memory size were not bounded, a68g might
claim all available memory before the garbage collector is called. Since this could impede
overall system performance, memory size is bounded.

¢ --storage number
Expands the default segment sizes number times.
¢ --heap number

Sets heap size to number bytes. This is the size of the block that will actually hold data, not
handles. At runtime a68g will use the heap to store temporary arrays, so even a program
that has no heap generators requires heap space, and can invoke the garbage collector.

Example: PR heap=32M PR
¢ --handles number

Sets handle space size to number bytes. This is the size of the block that holds handles that
point to data in the heap. A reference to the heap does not point to the heap, but to a handle
as to make it possible for the garbage collector to compact the heap.

Example: PR handles=2M PR
e .-frame number

Sets frame stack size to number bytes. A deeply recursive program with many local vari-
ables may require a large frame stack space.

195

LEARNING ALGOL 68 GENIE

Example: PR frame=1M PR
e -.stack number

Sets expression stack size to number bytes. A deeply recursive program may require a
large expression stack space.

Example: PR stack=512k PR
¢ --overhead number

Sets the overhead, which is a safety margin, for the expression stack and the frame stack
to number bytes. Since stacks grow by relatively small amounts at a time, Algol 68 Genie
checks stack sizes only where recursion may set in. It is checked whether stacks have
grown into the overhead. For example, if the frame stack size is 512 kB and the overhead
is set to 128 kB, Algol 68 Genie will signal an imminent stack overflow when the frame
stack pointer exceeds 512 — 128 = 384 kB. When the overhead is set to a too small value, a
segment violation may occur.

Example: PR overhead=64k PR

9.6.3 Listing options

* ..extensive

Generates an extensive listing, including source listing, syntax tree, cross reference, gen-
erated C code et cetera. This listing can be quite bulky.

e -.listing

Generates concise listing.

* --moids

Generates overview of moids in listing file.

¢ --prelude-listing

Generates a listing of preludes.

¢ --object, --no-object

Switches listing of object C code in listing file. This requires --optimise.
* --source, --no-source

Switches listing of source lines in listing file.

¢ ..statistics

196

PROGRAMMING WITH ALGOL 68 GENIE

Generates statistics in listing file.
¢ --tree, --no-tree

Generates syntax tree listing in listing file. This option can make the listing file bulky, so
use considerately.

* --unused
Generates an overview of unused tags in the listing file.
¢ --xref, --no-xref

Switches generating a cross reference in the listing file.

9.6.4 Compiler-interpreter options

* --.optimise, --optimize, --no-optimise, --no-optimize

Enables or disables the unit compiler which emits C code for many units, and then com-
piles and dynamically links this code before it is executed by Algol 68 Genie. This option
omits many runtime checks. Option --optimise is equivalent to option -00. On some plat-
forms, the plugin compiler is disabled.

* -00, -Og, -01, -02, -03

Invokes --optimise but selects a specific optimisation level for the compilation of generated
code. The plugin compiler actions depend on the optimisation level, where —03 enables
most optimisations. The option is also passed to gcc as optimiser option. Option --optimise
is equivalent to option -O0.

* --compile, --no-compile

This option works on Linux. Enables, or disables, generation of a shell script for your pro-
gram. The shell script will have the name filename stripped from its extension. The shell
script stores the source code and the generated shared library, in a compressed manner.
One can in a later stage run this shell script. Command line options passed to the script
are not processed by a68g, but can be processed by your script instead.

* --rerun
Run using the shared library generated by a previous run. See also option --optimise.
* --monitor | --debug

Start the program in the monitor. You will have to start program execution manually.
Also, upon encountering a runtime error, instead of terminating execution, the monitor will
be entered.

197

LEARNING ALGOL 68 GENIE

¢ --assertions, --no-assertions

Switches elaboration of assertions.

¢ ..backtrace, --no-backtrace

Switches stack back tracing in case of a runtime error.

¢ -.breakpoint, --no-breakpoint

Switches setting of breakpoints on following program lines.
* --trace, --no-trace

Switches tracing of a program.

* --precision number

Sets precision for LONG LONG modes to number significant digits. The precision cannot be
less than the precision of LONG modes. Algorithms for extended precision in a68g are not
really suited for precisions larger than about a thousand digits. State of the art in the field
offers more efficient algorithms than implemented here.

e -time-limit number

On Linux, interrupts Algol 68 Genie after number seconds; a time limit exceeded runtime
error will be given. This can be useful to detect endless loops. Trivial example:

$ a68g —-time-limit=1 --exec "DO SKIP OD"
1 (DO SKIP OD)
1
a68g: runtime error: 1l: time limit exceeded (detected in
VOID loop-clause starting at "DO" in this line).

9.6.5 Miscellaneous options

* --apropos, --help, --info [string]
Prints info on options if string is omitted, or prints info on string otherwise.
* -.upper-stropping, --quote-stropping

Sets the stropping regime. Upper stropping is the default. Quote stropping is implemented
to let a68g scan vintage source code.

e ..brackets

Enables non-traditional use of brackets. This optionmakes ... and [...] equivalent
to (...) for the parser.

198

PROGRAMMING WITH ALGOL 68 GENIE

¢ --check | --no-run
Check syntax only, interpreter does not start.
¢ --clock

Report elapsed time for Algol 68 program execution. This time does not include time needed
to compile the program.

* -.run
Overrides --norun.
e ..exit | --

Ignore further options from command line or current pragmat. This option is usually pro-
vided under Linux to allow source file names to have a name beginning with a minus-sign.

* -.script

This option takes the next option as source file name, and prevents that further options
are processed as a68g options, so you can have a script handle them as you see fit. Would
you want to pass further options to be processed by a68g, then these have to be passed as
pragmat-items. This option is particularly suited for writing scripts.

e -file | -f string

Accept argument string as generic filename. This option serves to pass filenames that
through their spelling would conflict with shell syntax.

¢ --pedantic

Equivalent to --warning --portcheck.

¢ -.portcheck, --no-portcheck

Enable or suppress portability warning messages.
¢ --strict

Ignores most a68g extensions to Algol 68 syntax as described by the Revised Report. This
option implies --portcheck, and a68g will not reserve words ANDF, ANDTH, CLASS, CODE,
COL, DIAG, DOWNTO, EDOC, ELSF, ENVIRON, NEW, OREL, ORF, ROW, THEF, TRNSP and UNTIL.

* ..warnings, --no-warnings
Enable warning messages or suppresses suppressible warning messages.
* --pragmats, --no-pragmats

Switches elaboration of pragmat items. When disabled, pragmat items are ignored, except

199

LEARNING ALGOL 68 GENIE

for option pragmats.
¢ ..reductions

Prints reductions made by the parser. This option was originally meant for parser debug-
ging but can be quite instructive (and very verbose).

e ..verbose
Informs on actions.
* ..version

States the version of the running copy of a68g.

9.7 The preprocessor

a68g has a basic preprocessor. Currently, the preprocessor supports these features:

1. concatenation of lines,
inclusion of files,

refinement preprocessor,

~ e N

switching the preprocessor on or off.

9.7.1 Concatenation of lines
Concatenation of lines is similar to what the C preprocessor does. Any line that ends in a
backslash (’\’) will be concatenated with the line following it. For example:

STRING s := "spanning two \
lines™"

will become:
STRING s := "spanning two lines"

Using a backslash as an escape character causes no interference with Algol 68 source text
since when using upper stropping, a backslash is an unworthy character; when using quote
stropping a backslash is a times-ten-symbol, but a real-denotation cannot span end-of-line
hence no interference occurs.

Note that when you make use of line concatenation, diagnostics in a concatenated line may
be placed in an earlier source line than its actual line in the original source text. In order

200

PROGRAMMING WITH ALGOL 68 GENIE

to preserve line numbering as much as possible, a line is emptied but not deleted if it is
joined with a preceding one. This shows in the listing file as emptied lines.

9.7.2 Inclusion of files

In a68g, by the use of pragmats you can textually include files in your source. The inclusion
directive reads:

PR read "filename" PR
or:
PR include "filename" PR

The file with name filename is inserted textually before the line that holds the file inclusion
directive. In this way tokens remain in their original lines, which will give more accurate
placement of diagnostics. It is therefore recommended that a file inclusion directive be
the only text on the line it is in. A file will only be inserted once, on attempted multiple
inclusion the file is ignored. Attempted multiple inclusion may for example result from
specifying, in an included file, an inclusion directive for an already included file.

9.7.3 The refinement preprocessor

Algol 68 Genie is equipped with a basic refinement preprocessor, which allows program-
ming through stepwise refinement as taught in [Koster 1978, 1981]. A similar preprocessor
was actually used in computer science classes at the University of Nijmegen as a front-end
for rLACC . The idea is to facilitate program construction by elaborating the description of
the solution to a problem as ever more detailed steps until the description of the solution
is complete. (See also Wirth’s well known lecture).

Refinement syntax can be found in the syntax summary. Refinements cannot be recur-
sive, nor can their definitions be nested. Also, refinement definitions must be unique, and
a refinement can only be applied once (refinements are not procedures). a68g will check
whether a program looks like a stepwise refined program. The refinement preprocessor
is transparent to programs that are not stepwise refined.

9.7.4 Switching the preprocessor on or off

t is possible to switch the preprocessor on or off. The preprocessor is per default switched
on. If switched off, it will no longer process preprocessor items embedded in pragmats,
except for switching the preprocessor on again. Concatenation of lines takes place even if
the preprocessor is switched off.

201

LEARNING ALGOL 68 GENIE

PR preprocessor PR
Switches the preprocessor on if it is switched off.
PR nopreprocessor PR

Switches the preprocessor off if it is switched on.

9.8 The monitor

The a68g interpreter has a monitor for debugging of a running program. The monitor
is invoked when a68g receives signal SIGINT (which usually comes from typing CTRL-C),
when standard procedures debug or break are called, or when a runtime error occurs
while option monitor or debug is in effect. Breakpoints can be indicated a priori through
pragmats as well.

Following shows an example where the monitor is invoked by typing CTRL-C:

$ a68g buggy
~C
121 WHILE n ~= 0 DO

Terminate a68g (yes|no): n
This is the main thread
(a68qg)

The prompt (a68g) tells you that the monitor is awaiting a command. Next section de-
scribes the commands that the monitor can process.

9.8.1 Monitor commands

As with options, monitor command names are not case sensitive, but arguments are. In
the list below, upper-case letters denote letters mandatory for recognition. Currently, the
monitor recognises next commands:

1. apropos string
help string
info string Prints info on monitor commands if string is omitted, or prints info on
string otherwise.

2. breakpoint n [if expression 1 Set breakpoints on units in line n. If you supply
expression then interruption will only take place if expression yields TRUE. If expression

202

PROGRAMMING WITH ALGOL 68 GENIE

10.

11.

12.

13.

is incorrect, it is ignored. Algol 68 Genie only breaks in serial-clauses, collateral-
clauses and enquiry-clauses, in unit-lists in in-parts of integer-clauses or conformity-
clauses, and sources in declarations. Note that a breakpoint expression is a nice
debugging tool, but it slows down execution a lot.

. breakpoint watch [caxpression 1 Sets the watchpoint expression, or clears it if

expression is not specified. Interruption will take place whenever expression yields
TRUE. If expression is incorrect, it is ignored. Algol 68 Genie only breaks in serial-
clauses, collateral-clauses and enquiry-clauses, in unit-lists in in-parts of integer-
clauses or conformity-clauses, and sources in declarations. Note that a watch-
point expression is a nice debugging tool, but it slows down execution a lot.

breakpoint n clear Clears breakpoints on units in line n.

. breakpoint [list] Lists all breakpoints and the watchpoint expression.

. breakpoint clear [all] Clears all breakpoints and the watchpoint expression.

. breakpoint clear watchpoint Clears the watchpoint expression.

. breakpoint clear breakpoints Clears all breakpoints.

bt n Print n frames in the stack following the dynamic link (Back Trace) (default
n = 3).

calls n Print n frames in the call stack (default n = 3).

continue
resume Continue execution.

do command
exec command Pass command to the shell and print the return code.

evaluate cxpression
x expression Evaluate expression and show its result. For a description of monitor
expressions see next section.

203

LEARNING ALGOL 68 GENIE

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

204

examine n Print value of all identifiers named n in the call stack.

exit
hx
quit Terminates a68g.

frame n Select stack frame n as the current stack frame. If n is not specified, print
the current stack frame. If n = 0 is specified, the current stack frame will be the top
one in the frame stack.

heap n Print contents of the heap with address not greater than n.

ht Halts typing to standard output.

link n Print n frames in the stack, following the static link (default n = 3). This
will give generally give a shorter back trace than stack since the static link links to
the frame embedding (a) the actual lexical level or (b) the incarnations of the active
procedure, while the dynamic link just points at the previous lexical level (and thus
walks through all incarnations of a recursive procedure and all ranges of clauses).

rerun
restart Restarts the Algol 68 program without resetting breakpoints.

reset Restarts the Algol 68 program and resets breakpoints.

rt Resumes typing to standard output.

list n m If m is omitted, show n lines around the interrupted line (default n = 10). If
n and m are supplied, show lines n up to m.

next Resume execution until the next unit (that can be a breakpoint) is reached; do
not enter routine-texts.

step Resume execution until the next unit (that can be a breakpoint) is reached.

PROGRAMMING WITH ALGOL 68 GENIE

26.

27.

28.

29.

30.

31.

finish

out Resume execution until the next unit (that can be a breakpoint) is reached, after
the current procedure incarnation will have finished. You typically use this to leave
a procedure and to stop in the caller.

until » Resume execution until the first unit (that can be a breakpoint) is reached,
on line number n.

prompt n Set prompt to n. Default prompt is n = (a68¢).

sizes Show sizes of various memory segments.

stack n Print n frames in the stack following the dynamic link (default n = 3).

where Show the line where interruption took place.
xref n Give detailed information on source line n.

9.8.2 Monitor expressions

Monitor expressions provide basic means to do arithmetic in the monitor, and to change
stored values. Monitor expression syntax is similar to Algol 68 syntax. Important points

are:

1.

2.

Expressions, assignation sources, and assignation destinations, are strictly evalu-
ated from left to right.

Actual assignation is done from right to left:

(a68g) x a[l] := 0

(REF INT) refers to heap (892000)
(INT) +0

(a68g) x a[2] := a[l] :=1

(REF INT) refers to heap (892016)
(INT) +1

Note that the result of the evaluation of an expression is preceded by the mode of
that result.

. Only procedures and operators from standard environ can be called, and operator

priorities are taken from standard environ.

205

LEARNING ALGOL 68 GENIE

4.

9.9

Operands are denotations, identifiers, closed-clauses, calls and slices. Casts
are also operands but can only be made to mode [LONG] [LONG] REAL or to a (mul-
tiple) reference to an indicant:

(a68g) x REAL (1)

(REAL) +1.00000000000000E +O

(a68g) x REF TREE (k) IS NIL

(BOOL) F

(a68g) x REF TREE (k) := NIL

(REF REF STRUCT (INT £, REF SELF next)) refers to heap (600000)

(REF STRUCT (INT f, REF SELF next)) NIL

Slicing does not support trimmers. Only [and] are allowed as brackets for in-
dexers.
Selections are allowed, but not multiple selections:

(a68g) x im OF z
(REF LONG REAL) refers to frame (80)
(LONG REAL) +3.1415926535897932384626433832795029

Dereferencing is the only coercion in arithmetic. Names can be compared through 15
and ISNT, and NIL is supplied, but there is no soft coercion of operands.

Algol 68 Genie internals

This section explains, without going into all detail, how a68g executes a program. Algol 68
Genie employs a multi-pass scheme to parse Algol 68 [Lindsey 1993]:

1.

206

The tokeniser. The source file is tokenised, and if needed a refinement preproces-
sor elaborates a stepwise refined program. The result is a linear list of tokens that
is input for the parser, that will transform the linear list into a syntax tree. a68g
tokenises all symbols before the parser is invoked. This means that scanning does
not use information from the parser. The scanner does some rudimentary parsing:
format-texts can have enclosed-clauses in them, so information is recorded in a
stack as to know what is being scanned. Also, the refinement preprocessor imple-
ments a (trivial) grammar.

The parser. First, parentheses are checked to see whether they match. Then a top-
down parser determines the basic-block structure of the program so symbol tables
can be set up that the bottom-up parser will consult as you can define things be-
fore they are applied. After that the bottom-up parser parses without knowing about
modes while parsing and reducing. It can therefore not exchange [...] with (

) asis allowed by the Revised Report. This is solved by treating calls and slices
as equivalent for the moment and letting the mode checker sort it out later. This is a

PROGRAMMING WITH ALGOL 68 GENIE

Mailloux-type parser [Mailloux 1968], in the sense that it scans a range for declara-
tions — identifiers, operator-symbols and operator priorities — before it starts
parsing, and thus allows for tags to be applied before they are declared.

3. The mode checker. The modes in the program are collected. Derived modes are cal-
culated. Well-formedness is checked and structural equivalence is resolved. Then the
modes of constructs are checked and coercions are inserted.

4. The static-scope checker. This pass checks whether you export names out of their
scopes. Some cases cannot be detected by a static-scope checker, therefore Algol 68
Genie applies dynamic-scope checking.

5. The plugin compiler. This is an optional phase. The plugin compiler emits C code
for many units and has this code compiled by gcc, after which the dynamic linker
loader will make this code available to Algol 68 Genie.

6. The interpreter. The interpreter executes the syntax tree that results from the previ-
ous passes.

9.10 Limitations and bugs

Next a68g issues are known:

1. If you specify option ——opt imise and find a possible bug, use the default -—no-optimise
to check whether you get a runtime error from the interpreter proper. The plugin
compiler omits many runtime checks, making a faulty Algol 68 program behave er-
ratically.

2. Algol 68 Genie offers optional checking of the system stack. When this check is not
activated, or on systems where this check would not work, the following may result
in a segment violation (and possibly a core dump):

(a) Deep recursion or garbage collection of deeply recursive data structures.
(b) Using jumps to move between incarnations of recursive procedures.

3. When the stack overhead {9.6.2} is set to a too small value, a segment violation may
occur.

4. Algorithms for extended precision (LONG LONG arithmetic modes) are not really suited
for precisions larger than about a thousand digits. State of the art in the field offers
more efficient algorithms than implemented here.

5. Overflow- and underflow checks on REAL and COMPLEX operations require IEEE-
754 compatibility. Many processor types, notably ix86’s and PowerPC processors, are
IEEE-754 compatible.

207

LEARNING ALGOL 68 GENIE

6. A garbage collector cannot solve all memory allocation issues. It is therefore possible
to get an unexpected "out of memory" diagnostic. Two options in such case are:

(a)
(b)

Increase heap size.

Call standard prelude routine sweep heap or preemptive sweep at strategic
positions in the program.

7. There are some libplot related issues. Algol 68 Genie cannot work around these
problems in 1ibplot:

208

(a)

(b)

(c)

In some versions of 1ibplot, pseudo-gif plotters produce garbled graphics when
more than 256 different colours are specified.

Some platforms cannot give proper 1ibplot support for all plotter types. Linux
with the X window system lets 1ibplot implement all plotters but for example
the Win32 executable provided for a68g will give runtime errors as X plotter
missingor postscript plotter missing due to anincomplete 1ibplot li-
brary for that platform. On other platforms it is possible that a plotter produces
garbage or gives a message as output stream Jjammed.

In some versions of 1ibplot, X plotters do not flush after every plotting op-
eration. It may happen that a plotting operation does not show until close is
called for that plotter (after closing, an X plotter window stays on the screen (as
a forked process) until you type "q" while it has focus, or click in it).

Standard prelude and library prelude

10.1 The standard environ

An Algol 68 program run with a68g is embedded in the next environ:

BEGIN
COMMENT
Here the standard-prelude and library-prelude are included.
COMMENT
PR include "standard prelude" PR
PR include "library prelude" PR
BEGIN
MODE DOUBLE = LONG REAL;
start: commence:
BEGIN COMMENT

BEGIN
COMMENT
Here your program is embedded.
COMMENT
PR include "program" PR

END;

stop: abort: halt: SKIP

END
END

A consequence of this standard-environ is that an a68g program does not need to be an
enclosed-clause; a serial-clause suffices.

10.2 The standard prelude

Next sections up to and including the section on transput describe the facilities in the
standard prelude supplied with a684.

209

LEARNING ALGOL 68 GENIE

10.3 Standard modes

Many of the modes available in the standard prelude are built from the standard modes of
the language which are all defined in the Revised Report:

1. vOID
This mode has one value: EMPTY. It is used as the yield of routines, in casts and in
unions.

2. INT
In a68g, these precisions are available:
(a) INT
(b) LONG INT
(c) LONG LONG INT
3. REAL
In a68g, these precisions are available:
(a) REAL
(b) LONG REAL
(c) LONG LONG REAL

4. BOOL
This mode has two values, TRUE and FALSE .

5. CHAR
This mode is used for most character operations.

6. STRING
This mode is defined as:
MODE STRING = FLEX [1 : 0] CHAR
7. COMPLEX, COMPL
This is not a primitive mode because it is a structure with two fields:
MODE COMPLEX = STRUCT (REAL re, im)
However, the widening coercion will convert a REAL value into a COMPLEX value,
and transput routines will not straighten a COMPLEX - or REF COMPLEX value. Like
REALS, the following precisions are available in a68g:
(a) COMPLEX
(b) LONG COMPLEX

(¢) LONG LONG COMPLEX

210

PROGRAMMING WITH ALGOL 68 GENIE

10.

11.

12.

13.

14.

15.

BITS
This mode is equivalent to a computer word regarded as a group of bits (binary digits)
numbered 1 to bits width. These precisions are available in a68g :
(a) BITS
(b) LONG BITS
(c) LONG LONG BITS
BYTES
This mode stores a row-of-character in a single value. These precisions are available
in a68g:
(a) BYTES
(b) LONG BYTES
SEMA
Semaphores are used to synchronise parallel actions. This mode is defined as:
MODE SEMA = STRUCT (REF INT F)
Note that the field cannot be directly selected.

CHANNEL
Channels describe the properties of a FILE.

FILE
A FILE structure holds status of transputting to or from a specific stream of bytes.

FORMAT
Holds an internal representation of format-texts and their elaboration.

PIPE
Pipes describe software pipelines with which an output stream can be directly con-
nected to an input stream. This is a Unix feature that is available under Linux.

SOUND
Sounds hold sound values which can be manipulated with a68g.

10.4 Environment enquiries

Algol 68 was the first programming language to contain declarations which enable a
programmer to determine the characteristics of the implementation. The enquiries are
divided into a number of different groups.

211

LEARNING ALGOL 68 GENIE

10.4.1 Enquiries about precisions

Any number of LONG or SHORT can be given in the mode specification of numbers, but only
a few such modes are distinguishable in any implementation. The following environment
enquiries tell which modes are distinguishable:

1. INT int lengths
1+ the number of extra lengths of integers.

2. INT int shorths
1+ the number of short lengths of integers.

3. INT real lengths
1+ the number of extra lengths of real numbers.

4. INT real shorths
1+ the number of short lengths of real numbers.

5. INT bits lengths
14 the number of extra lengths of BITS.

6. INT bits shorths
1+ the number of short lengths of BITS.

7. INT bytes lengths
1+ the number of extra lengths of BYTES.

8. INT bytes shorths
1+ the number of short lengths of BYTES.

10.4.2 Characteristics of modes
1. INT max int
The maximum value of mode INT.

2. LONG INT long max int
The maximum value of mode LONG INT.

3. LONG LONG INT long long max int
The maximum value of mode LONG INT.

4. REAL max real
The largest real value.

5. REAL min real
The smallest real value.

212

PROGRAMMING WITH ALGOL 68 GENIE

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

REAL small real
The smallest real which, when added to 1.0, gives a sum larger than 1.0.

LONG REAL long max real
The largest long real value.

LONG REAL long min real
The smallest long real value.

LONG REAL long small real
The smallest long real which, when added to 1.0, gives a sum larger than 1.0.

LONG LONG REAL long long max real
The largest long long real value.

LONG LONG REAL long long min real
The smallest long long real value.

LONG LONG REAL long long small real
The smallest long long real which, when added to 1.0, gives a sum larger than 1.0.

INT int width
The maximum number of decimal digits expressible by an integer.

INT long int width
The maximum number of decimal digits expressible by a long integer.

INT long long int width
The maximum number of decimal digits expressible by a long long integer.

INT bits width
The number of bits required to hold a value of mode BITS.

INT long bits width
The number of bits required to hold a value of mode LONG BITS.

INT long long bits width
The number of bits required to hold a value of mode LONG LONG BITS.

INT bytes width
The number of bytes required to hold a value of mode BYTES.

INT long bytes width
The number of bytes required to hold a value of mode LONG BYTES.

INT real width
The maximum number of significant decimal digits in a real.

INT exp width
The maximum number of decimal digits in the exponent of a real.

213

LEARNING ALGOL 68 GENIE

23. INT long real width
The maximum number of significant decimal digits in a long real.

24, INT long exp width
The maximum number of decimal digits in the exponent of a long real.

25. INT long long real width
The maximum number of significant decimal digits in a long real.

26. INT long long exp width
The maximum number of decimal digits in the exponent of a long long real.

10.4.3 Mathematical constants

1. REAL pi
The value 3.14159265358979.

2. LONG REAL long pi
The value 3.1415926535897932384626433833.

3. LONG LONG REAL long long pi
The value 3.14159265358979323846264338327950288419716939937510582097494459

at default precision.

The long values of 7 are calculated using an AGM due to Borwein and Borwein':

1 1
Tit1 = 5(\/937-1-)

rog = \/§ \/E
1 .
™ = 2+V2 Tir1 = 771'(+xl)
L +yi
v = V2 YiV/Ti + g
Yi+1 = 71+y-
(2

The number 7 equals the limit 7.

10.4.4 Character set enquiries

LJ.M. Borwein and P.B. Borwein. Pi and the AGM: A study in analytical number theory and
computational complexity. Wiley [1987]).

214

PROGRAMMING WITH ALGOL 68 GENIE

The absolute value of Algol 68 characters range from 0 to the value of max abs char.
Furthermore, the operator REPR will convert any INT up to max abs char to a character.
What character is represented by REPR 225 will depend on the character set used by the
displaying device.

1. INT max abs char
The largest positive integer which can be represented as a character.

2. CHAR null character
This is REPR 0.

3. CHAR blank
This is the space character.

4. CHAR error char
This character is used by the formatting routines for invalid values.

5. CHAR flip
This character is used to represent TRUE in transput.

6. CHAR flop
This character is used to represent FALSE in transput.

10.5 Standard operators

The number of distinct operators is vastly increased by the availability of SHORT and LONG
modes. Thus it is imperative that some kind of shorthand be used to describe the operators.
Following the subsection on the method of description are sections devoted to operators
with classes of operands. The end of this section contains tables of all the operators.

10.5.1 Method of description

Where an operator has operands and yield which may include 1.ONG or SHORT, the mode
is written using L. For example:

OP + = (L INT, L INT) L INT:

is shorthand for the following operators:

OP + = (INT, INT) INT:
OP + = (LONG INT, LONG INT) LONG INT:
OP + = (LONG LONG INT, LONG LONG INT) LONG LONG INT:

215

LEARNING ALGOL 68 GENIE

Ensure that wherever L is replaced by SHORTs or LONGS, it should be replaced by the same
number of SHORTS or LONGs throughout the definition of that operator. This is known as
"consistent substitution". Note that any number of SHORTs or LONGs can be given in the
mode of any value whose mode accepts such constructs (INT, REAL, COMPLEX and BITS),
but the only modes which can be distinguished are those specified by the environment
enquiries in section 10.4.1. a68g maps a declarer whose length is not implemented onto
the most appropriate length available {165.1.3.1}. Routines or operators for unimplemented
lengths are mapped accordingly. a68g considers mapped modes equivalent to the modes
they are mapped onto, while standard Algol 68 would still set them apart.

10.5.2 Operator synonyms

Algol 68 provides a plethora of operators, and in some cases also synonyms for operators.
In the listings further on in this chapter, only one synonym will be defined per operator.
This is a list of synonyms for operator-symbols implemented in a68g:

—

AND for &
~ for *x
~ for NOT
~=for /=
~=for /=
I for ++
EQ for =

NE for /=

© ® N s ok WwdN

LE for <=

=
e

LT for <

—
=

. GE for >=

=
[\]

. GT for >

=
w

. OVER for &

=
S

. MOD for $x

=
Ot

. PLUSAB for +:=

=
(o]

. MINUSARB for —:=

216

PROGRAMMING WITH ALGOL 68 GENIE

17.
18.
19.
20.
21.

10.5.3 Standard priorities

TIMESAB for x:=
DIVAB for /:=
OVERARB for & :=

MODARB for $x :

PLUSTO for +=

The priority of an operator is independent of the mode of the operands or result. The
standard prelude sets next priorities for operators:

e T A L T T R I o

OR

*,/,%, %, ELEM

*%, UP, DOWN, SHL, SHR, LWB, UPB

+x, T

>

These priorities can be changed by PRIO in your program, but this easily leads to incom-
prehensibleprograms. Use PRIO for your own dyadic-operators.

10.5.4 Operators with row operands

Both monadic and dyadic forms are available. We will use the mode ROW to denote the mode

of any row.
1. Monadic.
OP LWB = (ROW r)
OP UPB = (ROW r)

INT
INT

Yield the lower-bound or upper-bound for the first dimension of r.

217

LEARNING ALGOL 68 GENIE

OP ELEMS = (ROW r) INT
Yields the number of elements, in all dimensions, of r.

2. Dyadic.
OP LWB = (INT n, ROW r) INT
OP UPB = (INT n, ROW r) INT

Yield the lower-bound or upper-bound of the n-th dimension of r.

OP ELEMS = (INT n, ROW r) INT
Yields the number of elements in the n-th dimension of r.

10.5.5 Operators with boolean operands

1. OP ABS = (BOOL a) INT
ABS TRUE yields a non-zero number and ABS FALSE yields zero.

2. OP AND = (BOOL a, b) BOOL
Logical AND.
3. OP OR = (BOOL a, b) BOOL

Logical inclusive OR.

4. OP XOR = (BOOL a, b) BOOL
Logical exclusive OR, XOR.

5. OP NOT = (BOOL a) BOOL
Logical NOT: yields TRUE if a is FALSE and yields FALSE if a is TRUE.

6. OP = = (BOOL a, b) BOOL
TRUE if a equals b and FALSE otherwise.

7. OP /= = (BOOL a, b) BOOL
TRUE if a not equal to b and FALSE otherwise.

10.5.6 Operators with integral operands

The shorthands in section 10.5.9 apply.

1. oP + = (L INT a) L INT
The identity operator.
2. OP - = (L INT a) L INT

The negation operator.

218

PROGRAMMING WITH ALGOL 68 GENIE

10.

OP ABS = (L INT a) L INT
The absolute value: (a < 0 | - a | a).
OP SIGN = (L INT a) INT

Yields —1 for a negative operand, +1 for a positive operand and 0 for a zero oper-
and.

OP ODD = (L INT a) BOOL
Yields TRUE if the operand is odd and FALSE if it is even. This is a relic of times long
past.

OP LENG = (L INT a) LONG L INT
Converts its operand to the next longer precision.

OP SHORTEN = (LONG L INT a) L INT
Converts its operand to the next shorter precision. If a exceeds 1 max int for the
next shorter precision, a runtime error occurs.

OP + = (L INT a, L INT b) L INT
Integer addition: a + b.

OP - = (L INT a, L INT b) L INT
Integer subtraction: a — b.

. OP » = (L INT a, L INT b) L INT

Integer multiplication: a x b.

OP / = (L INT a, L INT b) L REAL
Integer fractional division. Even if the quotient is a whole number (for example, 6/3),
the yield always has mode . REAL.

OP % = (L INT a, L INT b) L INT
Integer division.

OP %+ = (L INT a, L INT b) L INT
Integer modulo, which always yields a non-negative result {2.6}.

OP % = (L INT a, INT b) L INT
Computes a® for b > 0.

OP +x = (L INT a, L INT b) L COMPLEX
Joins two integers into a complex number a + bi of the same precision.

OP = = (L INT a, L INT b) BOOL
Integer equality: a = b.

OP /= = (L INT a, L INT b) BOOL
Integer inequality: a # b.

219

LEARNING ALGOL 68 GENIE

11. OP < = (L INT a, L INT b) BOOL
Integer "less than" a < b.

12. OP <= = (L INT a, L INT b) BOOL
Integer "not greater than" a < b.

13. oPp >= = (L INT a, L INT b) BOOL
Integer "not less than": a > 0.

14. op > = (L INT a, L INT b) BOOL
Integer "greater than": a > b.

10.5.7 Operators with real operands

The shorthands in section 10.5.9 apply.

1. op + = (L REAL a) L REAL
Real identity.
2. OP - = (L REAL a) L REAL

Real negation: —a.

3. OP ARS = (L REAL a)L REAL
The absolute value.

4. OP SIGN = (L REAL a) INT
Yields —1 for negative operands, +1 for positive operands and 0 for a zero oper-
and.

5. OP ROUND = (L REAL a) L INT

Rounds its operand to the nearest integer. The operator checks for integer overflow.

6. OP ENTIER = (L REAL a)L INT
Yields the largest integer not larger than the operand. The operator checks for in-
teger overflow.

7. OP LENG = (L REAL a) LONG L REAL
Converts its operand to the next longer precision.

8. OP SHORTEN = (LONG L REAL a) L REAL
Converts its operand to the next shorter precision. If a value exceeds 1 max real
for the next shorter precision, a runtime error occurs. The mantissa will be rounded.

1. OP + = (L REAL a, L REAL b) L REAL
Real addition a + b.

220

PROGRAMMING WITH ALGOL 68 GENIE

2. OP - = (L REAL a, L REAL b) L REAL
Real subtraction a — b.

3. OP » = (L REAL a, L REAL b) L REAL
Real multiplication a x b.

4. Op / = (L REAL a, L REAL b) L REAL
Real division a/b.

5. OP +* = (L REAL a, L REAL b) L COMPLEX
Joins two reals into a complex number a + bi of the same precision.

6. OP = = (L REAL a, L REAL b) BOOL
Real equality: a = b.

7. OP /= = (L REAL a, L REAL b) BOOL
Real inequality: a # b.

8. OP < = (L REAL a, L REAL b) BOOL
Real "less than": a < b.

9. OP <= = (L REAL a, L REAL b) BOOL
Real "not greater than": a < b.

10. oP >= = (L REAL a, L REAL b) BOOL
Real "not less than": a > b.

11. OP > = (L REAL a, L REAL b)BOOL
Real "greater than": a > b.

10.5.8 Operators with complex operands

Algol 68 Genie offers a rich set of operators and routines for complex numbers. The short-
hands in section 10.5.9 apply.

1. OP RE = (L COMPLEX a) L REAL
Yields the real component: re OF a.

2. OP IM = (L COMPLEX a) L REAL
Yields the imaginary component: im OF a.

3. OP ABS = (L COMPLEX a) L REAL
Yields the absolute value (a magnitude) of its argument.

4. OP ARG = (L COMPLEX a) L REAL
Yields the argument of the complex number.

221

LEARNING ALGOL 68 GENIE

5. OP CONJ = (L COMPLEX a) L COMPLEX
Yields the conjugate complex number.

6. OP + = (L COMPLEX a) L COMPLEX
Complex identity.
7. OP - = (L COMPLEX a) L COMPLEX

Complex negation.

8. OP LENG = (L COMPLEX a) LONG L COMPLEX
Converts its operand to the next longer precision.

9. OP SHORTEN = (LONG L COMPLEX a) L COMPLEX
Converts its operand to the next shorter precision. If either of the components of
the complex number exceeds 1 max real for the next shorter precision, a runtime
error occurs.

1. OP + = (L COMPLEX a, L COMPLEX b) L COMPLEX

Complex addition for both components a + b.

2. 0P - = (L COMPLEX a, L COMPLEX b) L COMPLEX

Complex subtraction for both components a — b.

3. OP » = (L COMPLEX a, L COMPLEX b) L COMPLEX
Complex multiplication a * b.

4. op / = (L COMPLEX a, L COMPLEX b) L COMPLEX
Complex division a/b.

5. Op = = (L COMPLEX a, L COMPLEX b) BOOL
Complex equality a = b.

6. OP /= = (L COMPLEX a, L COMPLEX b) BOOL
Complex inequality a # b.

10.5.9 Operators with mixed operands
The shorthands in section 10.5.9 apply. Extra shorthands are used, as follows:

1. The shorthand p stands for +, —, = or /.
2. The shorthand R stands for <, <=, =, /=, >=, >, or LT, LE, EQ, NE, GE, GT.

3. The shorthand E stands for = /=, or EQ or NE.

222

PROGRAMMING WITH ALGOL 68 GENIE

1. 0P P = (L INT a, L REAL b) L REAL

2. OP P = (L REAL a, L INT b) L REAL

3. 0p P = (L INT a, L COMPLEX b) L COMPLEX

4. OP P = (L COMPLEX a, L INT b) L COMPLEX

5. 0P P = (L REAL a, L COMPLEX b) L COMPLEX

6. OP P = (L COMPLEX a, L REAL b) L COMPLEX

7. OP R = (L INT a, L REAL b) BOOL

8. OP R = (L REAL a, L INT b) BOOL

9. 0P E = (L INT a, L COMPLEX b) BOOL

10. OP E = (L COMPLEX a, L INT b) BOOL

11. oP E = (L REAL a, L COMPLEX b) BOOL

12. oP E = (L COMPLEX a, L REAL b) BOOL

13. OP x+* = (L REAL a, INT b) L REAL

14. OP % = (L COMPLEX a, INT b) L COMPLEX

15. OP ++* = (L INT a, L REAL b) L COMPLEX

16. OP +* = (L REAL a, L INT b) L COMPLEX
10.5.10 Operators with BITS operands

The shorthands in section 10.5.9 apply.

1. OP BIN = (L INT a) L BITS
Mode conversion.

2. OP ABS = (L BITS a) L INT
Mode conversion.

3. OP NOT = (L BITS a) L BITS

Yields the bits obtained by inverting each bit in the operand.

4. OP LENG = (L BITS a)

LONG L BITS

Converts a bits value to the next longer precision by adding zero bits to the more

significant end.

223

LEARNING ALGOL 68 GENIE

5. OP SHORTEN = (LONG L BITS a) L BITS
Converts a bits value to a value of the next shorter precision.

1. OP AND = (L BITS a, L BITS b) L BITS
The logical "AND" of corresponding binary digits in a and b.

2. OP OR = (L BITS a, L BITS b) L BITS
The logical "OR" of corresponding binary digits in a and b.

3. OP SHL = (L BITS a, INT b) L BITS
The left operand shifted left by the number of bits specified by the right operand.
New bits shifted in are zero. If the right operand is negative, shifting is to the right.

4., OP SHR = (L BITS a, INT b) L BITS
The left operand shifted right by the number of bits specified by the right operand.
New bits shifted in are zero. If the right operand is negative, shifting is to the left.

5. OP ELEM = (INT a, L BITS b) BOOL
Yields TRUE if bit a is set, and FALSE if it is not set.

6. OP = = (L BITS a, L BITS b) BOOL
Logical equality a = b.

7. OP /= = (L BITS a, L BITS b) BOOL
Logical inequality a # b.

8 OP <= = (L BITS a, L BITS b) BOOL

Yields TRUE a is a subset of b or FALSE otherwise: (a OR b) = b
9. OP »>= = (L BITS a, L BITS b) BOOL

Yields TRUE b is a subset of a or FALSE otherwise: (a OR b) = a

10.5.11 Operators with character operands
The shorthands in section 10.5.9 apply.
1. OP ABS = (CHAR a) INT

The integer equivalent of a character.

2. OP REPR = (INT a) CHAR
The character representation of an integer. The operand should be in the range 0
. max abs char.

3. OP + = (CHAR a, CHAR b) STRING
The character b is appended to the character a (concatenation).

224

PROGRAMMING WITH ALGOL 68 GENIE

4.

5.

OP E = (CHAR a, CHAR b) BOOL
Equality or inequality of characters.

OP R = (CHAR a, CHAR b) BOOL
Relative ordering of characters.

10.5.12 Operators with string operands

The shorthands in section 10.5.9 apply.

10.

OP ELEM = (INT a, STRING b) CHAR
Yields b[a]. This is an ALGOL68C operator.

OP + = (STRING a, STRING b) STRING

String b is appended to string a (concatenation).

OP + = (CHAR a, STRING b) STRING
String b is appended to character a.

OP + = (STRING a, CHAR b) STRING
Character b is appended to string a.

OP x = (INT a, STRING b) STRING
Yields a times string b, concatenated.

OP * = (STRING a, INT b) STRING
Yields b times string a, concatenated.

OP = = (INT a, CHAR b) STRING
Yields a times character b, concatenated.

OP » = (CHAR a, INT b) STRING
Yields b times character a, concatenated.

OP E (STRING a, STRING b) BOOL
OP E = (CHAR a, STRING b) BOOL
OP E (STRING a, CHAR b) BOOL

Equality or inequality of characters and strings.

OP R = (STRING a, STRING b) BOOL
OP R = (CHAR a, STRING b) BOOL
OP R = (STRING a, CHAR b) BOOL

Alphabetic ordering of strings.

225

LEARNING ALGOL 68 GENIE

10.5.13 Operators with bytes operands

The shorthands in section 10.5.9 apply.

1.

OP LENG = (BYTES a) LONG BYTES
Converts a bytes value to longer width by padding null characters.

OP SHORTEN = (LONG BYTES a) L BYTES
Converts a value to normal width.

OP ELEM = (INT a, L BYTES b) CHAR
Yields the a!* character in b.

OP + = (L BYTES a, L BYTES b) BYTES
Concatenation a + b

OP E = (L BYTES a, L BYTES b) BOOL
Equality or inequality of byte strings.

OP R = (L BYTES a, L BYTES b) BOOL
Alphabetic ordering of byte strings.

10.5.14 Operators combined with assignation

The shorthands in section 10.5.9 apply.

1.

2.

226

+:=
The operator is a shorthand fora := a + b.

Left operand Right operand Result

REF L INT L INT REF L INT

REF L REAL L INT REF L REAL
REF L COMPLEX L INT REF L COMPLEX
REF L REAL L REAL REF L REAL
REF L COMPLEX L REAL REF L COMPLEX
REF L. COMPLEX L COMPLEX REF L COMPLEX
REF STRING CHAR REF STRING
REF STRING STRING REF STRING
REF L BYTES L BYTES REF L BYTES
+=:
The operator is a shorthand forb := a + b.

Left operand Right operand Result

STRING REF STRING REF STRING

CHAR REF STRING REF STRING

L BYTES REF L BYTES REF L BYTES

PROGRAMMING WITH ALGOL 68 GENIE

3. —:=
The operator is a shorthand fora := a - b.
Left operand Right operand Result
REF L INT L INT REF L INT
REF L REAL L INT REF L REAL
REF L COMPLEX L INT REF L COMPLEX
REF L REAL L REAL REF L REAL
REF L COMPLEX L REAL REF L COMPLEX
REF L COMPLEX L COMPLEX REF L COMPLEX
4, x:=
The operator is a shorthand fora := a * b.
Left operand Right operand Result
REF L INT L INT REF L INT
REF L REAL L INT REF L REAL
REF L. COMPLEX L INT REF L COMPLEX
REF L REAL L REAL REF L REAL
REF L COMPLEX L REAL REF L COMPLEX
REF L. COMPLEX L COMPLEX REF L COMPLEX
REF STRING INT REF STRING
5. /:=
The operator is a shorthand fora := a / b.
Left operand Right operand Result
REF L REAL L INT REF L REAL
REF L REAL L REAL REF L REAL
REF L COMPLEX L INT REF L COMPLEX
REF L COMPLEX L REAL REF L COMPLEX
REF L COMPLEX L COMPLEX REF L COMPLEX
6. OP %:= = (REF L INT a, L INT b) REF L INT
The operator is a shorthand fora := a % b.
7. OP %%:= = (REF L INT a, L INT b) REF L INT
The operator is a shorthand fora := a %+ b.

10.5.15 Synchronisation operators
a68g implements the parallel-clause {4.12} on platforms that support Posix threads.

1. OP LEVEL = (INT a) SEMA
Yields a semaphore whose value is a.

227

LEARNING ALGOL 68 GENIE

2.

OP LEVEL = (SEMA a) INT
Yields the level of a, that is filed ¥ OF a.

OP DOWN = (SEMA a) VOID

The level of a is decremented. If it reaches 0, then the parallel unit that called this
operator is hibernated until another parallel unit increments the level of a again.

OP UP = (SEMA a) VOID

The level of a is incremented and all parallel units that were hibernated due to this

semaphore being down are awakened.

10.6 Standard procedures

The shorthand 1 is used to simplify the list of procedures. Many routines are available in
a default a68g build, while some require a68g be linked to an optional library. See section

9.3.1 for building a68g with optional libraries.

10.6.1 Procedures for real numbers

228

PROC L sgrt = (L REAL x) L REAL
Compute the square root.

PROC L curt = (L REAL x) L REAL
PROC L cbrt = (L REAL x) L REAL
Compute the cube root.

PROC L exp = (L REAL x) L REAL
Comput the exponential e*.

PROC L 1n = (L REAL x) L REAL
Compute the natural logarithm.

PROC L log = (L REAL x) L REAL
Compute the logarithm to base 10.

PROC L sin = (L REAL x) L REAL
PROC L cos = (L REAL x) L REAL
PROC L tan = (L REAL x) L REAL
PROC L csc = (L REAL x) L REAL
PROC L sec = (L REAL x) L REAL
PROC L cot = (L REAL x) L REAL

Compute the sine, cosine, tangent, cosecant, secant and cotangent in radians.

PROGRAMMING WITH ALGOL 68 GENIE

7. PROC L arcsin = (L REAL x) L REAL
PROC L arccos = (L REAL x) L REAL
PROC L arctan = (L REAL x) L REAL
PROC L arccsc = (L REAL x) L REAL
PROC L arcsec = (L REAL x) L REAL
PROC L arccot = (L REAL x) L REAL

Compute the inverse sine, cosine, tangent, cosecant, secant and cotangent in radians.

8. PROC L arctan2 = (L REAL x, y) L REAL
Compute the angle whose tangent is y/x. The angle will be in range [, 7].

9. PROC L sinh = (L REAL x) L REAL
PROC L cosh = (L REAL x) L REAL
PROC L tanh = (L REAL x) L REAL

Compute the hyperbolic sine, cosine or tangent.

10. PROC L arcsinh = (L REAL x) L REAL
PROC L arccosh (L REAL x) L REAL
PROC L arctanh (L REAL x) L REAL
Compute the inverse hyperbolic sine, cosine or tangent.

11. PROC L sin dg = (L REAL x) L REAL
PROC L cos dg = (L REAL x) L REAL
PROC L tan dg = (L REAL x) L REAL

Compute the sine, cosine and tangent in degrees.

12. PROC L arcsin dg = (L REAL x) L REAL
PROC L arccos dg (L REAL x) L REAL
PROC L arctan dg (L REAL x) L REAL
Compute the inverse sine, cosine or tangent in degrees.

13. PROC L arctan2 dg = (L REAL x, y) L REAL
Compute the angle whose tangent is y/x. The angle will be in range [—180, 180].

14. PROC L sin pi = (L REAL x) L REAL
PROC L cos pi = (L REAL x) L REAL
PROC L tan pi = (L REAL x) L REAL

Compute the sine, cosine and tangent of x7 yielding exact results where possible.

10.6.2 Procedures for complex numbers
The shorthand 1 is used to simplify the list of procedures.

1. PROC L complex sqrt = (L COMPLEX z) L COMPLEX
Compute the square root.

229

LEARNING ALGOL 68 GENIE

2. PROC L complex exp = (L COMPLEX z) L COMPLEX
Compute the exponential e?.

3. PROC L complex 1ln = (L COMPLEX z) L COMPLEX
Compute the natural logarithm.

4. PROC L complex sin = (L COMPLEX z) L COMPLEX
PROC L complex cos = (L COMPLEX z) L COMPLEX
PROC L complex tan = (L COMPLEX z)L COMPLEX

Compute the sine, cosine or tangent.

(L COMPLEX z) L COMPLEX
PROC L complex arccos (L COMPLEX z) L COMPLEX
PROC L complex arctan (L COMPLEX z)L COMPLEX
Compute the inverse sine, cosine or tangent.

5. PROC L complex arcsin

6. PROC L complex sinh = (L COMPLEX z) L COMPLEX
PROC L complex cosh = (L COMPLEX z) L COMPLEX
PROC L complex tanh = (L COMPLEX z) L COMPLEX

Compute the hyperbolic sine, cosine or tangent.

7. PROC L complex arcsinh = (L COMPLEX z) L COMPLEX
PROC L complex arccosh = (L COMPLEX z) L COMPLEX
PROC L complex arctanh = (L COMPLEX z) L COMPLEX

Compute the inverse hyperbolic sine, cosine or tangent.

10.6.3 Infinity

Algol 68 Genie behaves as other vintage programming languages in that non-numeric con-
ditions as infinity or undefined (Not a Number) result in runtime errors. Nonetheless, rou-
tines as gamma inc g can take co as argument. Therefore below procedures are imple-
mented, to facilitate routines that can handle them.

1. PROC infinity = L REAL
PROC inf = REAL
Yields an internal representation of +oc.

2. PROC minus infinity = L REAL
PROC min inf = REAL
Yields an internal representation of —oc.

10.6.4 Error, Gamma, Beta and related functions

230

PROGRAMMING WITH ALGOL 68 GENIE

Routines for the incomplete gamma function listed below employ algorithms from a recent
paper by Abergel and Moisan?.

10.

PROC L erf = (L REAL x) L REAL
Compute the error function.

PROC L erfc = (L REAL x) L REAL
Compute the complementary error function.

PROC L inverf = (L REAL x) L REAL
Compute the inverse Gauss error function.

PROC L inverfc = (L REAL x) L REAL
Compute the inverse complementary Gauss error function.

PROC L gamma = (L REAL) L REAL
Compute the Gamma function.

PROC L 1n gamma = (L REAL x) L REAL
Compute the natural logarithm of the Gamma function.

PROC L gamma inc = (L REAL p, x) L REAL
Compute the upper incomplete Gamma function.

PROC gamma inc f = (REAL p, x) REAL
Compute the incomplete Gamma function as special case Ii’jéo using gamma inc g.

PROC L gamma inc g = (L REAL p, x, y, mu) L REAL
Compute a generalised incomplete Gamma function.

T

Yy
Ip’gz/ ds sP~te Hs
X

where 0 < z <y, p > 0 and i # 0. Both 2 and y accept co. This routine strives to be
accurate in the case of x ~ y.

PROC gamma inc gf = (REAL p, x) REAL
Compute a generalised incomplete Gamma function G(p, x).

||
|z
r<p Gpz)=e*Phll [gssrles s
0

oo
z>p G(px)=e"PT [dssPles

xT

2Rémy Abergel, Lionel Moisan. Fast and accurate evaluation of a generalized incomplete gamma
function. 2019. hal-01329669v2.

231

LEARNING ALGOL 68 GENIE

11. PROC L beta = (L REAL x) L REAL
Compute the complete Beta function.

12. PROC L 1n beta = (L REAL x) L REAL
Compute the natural logarithm of the complete Beta function.

13. PROC L beta inc = (L REAL a, b, x) L REAL
Compute the ratio of the incomplete Beta function to the complete Beta function.

14. PROC fact = (INT n) REAL
Compute the factorial function.

15. PROC 1n fact = (INT n) REAL
Compute the natural logarithm of the factorial function.

16. PROC choose = (REAL n, m) REAL
Compute the combinatorial factor n!/ (m! (n-m) !).

17. PROC 1n choose = (REAL n, m) REAL
Compute the natural logarithm of combinatorial factor n!/ (m! (n-m) !).

10.7 Statistical procedures from R mathlib

Algol 68 Genie has bindings for R mathlib, the stand-alone math library from the R project.
Section 9.3.1 explains how to build a68g with this library. This way a68g can provide a
number of statistical routines from the R statistical package. Original R routine names are
prefixed with letter r to avoid name space conflicts.

1. PROC r digamma = (REAL x) REAL
Compute the derivative of the Gamma function.

2. PROC r trigamma = (REAL x) REAL
Compute the second derivative of the Gamma function.

3. PROC r tetragamma = (REAL x) REAL
Compute the third derivative of the Gamma function.

4. PROC r pentagamma = (REAL x) REAL
Compute the fourth derivative of the Gamma function.

5. PROC r psigamma = (REAL x, REAL n) REAL
Compute the n-th derivative of the digamma function.

For the respective distributions, routines starting with ' d’ give the probability at argu-
ment ’ x’, routines starting with ' p’ give the cumulative probability upto argument ’ x’

232

PROGRAMMING WITH ALGOL 68 GENIE

routines starting with ' g’ are the respective inverses of routines starting with 'p’, and
routines starting with ’ r’ yield a random variate. For more detailed descriptions of the R
routines please refer to R documentation.

1. PROC r dchisqg = (REAL x, df, BOOL give log) REAL
PROC r pchisg = (REAL x, df, BOOL lower tail, give log) REAL
PROC r gchisg = (REAL p, df, BOOL lower tail, log p) REAL
PROC r rchisg = (REAL df) REAL
Chi-square distribution.

2. PROC r dexp = (REAL x, scale, BOOL give log) REAL
PROC r pexp = (REAL x, scale, BOOL lower tail, give log) REAL
PROC r gexp = (REAL p, scale, BOOL lower tail, log p) REAL
PROC r rexp = (REAL scale) REAL
Exponential distribution.

3. PROC r dgeom = (REAL x, p, BOOL give log) REAL
PROC r pgeom = (REAL x, p, BOOL lower tail, give log) REAL
PROC r ggeom = (REAL p, p, BOOL lower tail, log p) REAL
PROC r rgeom = (REAL p) REAL
Geometrical distribution.

4. PROC r dpois = (REAL x, lambda, BOOL give log) REAL
PROC r ppois = (REAL x, lambda, BOOL lower tail, give log) REAL
PROC r gpois = (REAL p, lambda, BOOL lower tail, log p) REAL
PROC r rpois = (REAL lambda) REAL
Poisson distribution.

5. PROC r dt = (REAL x, n, BOOL give log) REAL
PROC r pt = (REAL x, n, BOOL lower tail, give log) REAL
PROC r gt = (REAL p, n, BOOL lower tail, log p) REAL
PROC r rt = (REAL n) REAL
Student-t distribution.

6. PROC r dbeta = (REAL x, a, b, BOOL give log) REAL
PROC r pbeta = (REAL x, a, b, BOOL lower tail, give log) REAL
PROC r gbeta = (REAL p, a, b, BOOL lower tail, log p) REAL
PROC r rbeta = (REAL a, b) REAL
Beta distribution.

7. PROC r dbinom = (REAL x, n, p, BOOL give log) REAL
PROC r pbinom = (REAL x, n, p, BOOL lower tail, give log) REAL
PROC r gbinom = (REAL p, n, p, BOOL lower tail, log p) REAL
PROC r rbinom = (REAL n, p) REAL

Binomial distribution.

233

LEARNING ALGOL 68 GENIE

10.

11.

12.

13.

234

PROC r dnchisg = (REAL x, df, ncp, BOOL give log) REAL

PROC r pnchisg = (REAL x, df, ncp, BOOL lower tail, give log) REAL
PROC r gnchisg = (REAL p, df, ncp, BOOL lower tail, log p) REAL
PROC r rnchisg = (REAL df, ncp) REAL

Non-central chi squared distribution.

PROC r dcauchy = (REAL x, location, scale, BOOL give log) REAL
PROC r pcauchy =

(REAL x, location, scale, BOOL lower tail, give log) REAL

PROC r gcauchy =

(REAL p, location, scale, BOOL lower tail, log p) REAL

PROC r rcauchy = (REAL location, scale) REAL

Cauchy distribution.

PROC r df = (REAL x, nl, n2, BOOL give log) REAL

PROC r pf = (REAL x, nl, n2, BOOL lower tail, give log) REAL
PROC r gf = (REAL p, nl, n2, BOOL lower tail, log p) REAL
PROC r rf = (REAL nl, n2) REAL

F distribution.

PROC r dlogis = (REAL x, location, scale, BOOL give log) REAL
PROC r plogis
(REAL x, location, scale, BOOL lower tail, give log) REAL
PROC r glogis =

(REAL p, location, scale, BOOL lower tail, log p) REAL

PROC r rlogis = (REAL location, scale) REAL
Logistic distribution.
PROC r dlnorm = (REAL x, logmean, logsd, BOOL give log) REAL

PROC r plnorm =

(REAL x, logmean, logsd, BOOL lower tail, give log) REAL
PROC r glnorm =

(REAL p, logmean, logsd, BOOL lower tail, log p) REAL
PROC r rlnorm = (REAL logmean, logsd) REAL

Log-normal distribution.

PROC r dnbinom = (REAL x, size, prob, BOOL give log) REAL
PROC r pnbinom =

(REAL x, size, prob, BOOL lower tail, give log) REAL

PROC r gnbinom =

(REAL p, size, prob, BOOL lower tail, log p) REAL

PROC r rnbinom = (REAL size, prob) REAL

Negative binomial distribution.

PROGRAMMING WITH ALGOL 68 GENIE

14.

15.

16.

17.

18.

19.

20.

21.

PROC r dnt = (REAL x, df, delta, BOOL give log) REAL

PROC r pnt = (REAL x, df, delta, BOOL lower tail, give log) REAL
PROC r gnt = (REAL p, df, delta, BOOL lower tail, log p) REAL
Non-central t distribution.

PROC r dnorm = (REAL x, mu, sigma, BOOL give log) REAL

PROC r pnorm = (REAL x, mu, sigma, BOOL lower tail, give log) REAL
PROC r gnorm = (REAL p, mu, sigma, BOOL lower tail, log p) REAL
PROC r rnorm = (REAL mu, sigma) REAL

Normal distribution.

PROC r dunif = (REAL x, a, b, BOOL give log) REAL

PROC r punif = (REAL x, a, b, BOOL lower tail, give log) REAL
PROC r qunif = (REAL p, a, b, BOOL lower tail, log p) REAL

PROC r runif = (REAL a, b) REAL

Uniform distribution.

PROC r dweibull = (REAL x, shape, scale, BOOL give log) REAL
PROC r pweibull =

(REAL x, shape, scale, BOOL lower tail, give log) REAL

PROC r gweibull =

(REAL p, shape, scale, BOOL lower tail, log p) REAL

PROC r rweibull = (REAL shape, scale) REAL

Weibull distribution.

PROC r dnf = (REAL x, nl, n2, ncp, BOOL give log) REAL

PROC r pnf = (REAL x, nl, n2, ncp, BOOL lower tail, give log) REAL
PROC r gnf = (REAL p, nl, n2, ncp, BOOL lower tail, log p) REAL
Non-central F distribution.

PROC r dhyper = (REAL x, nr, nb, n, BOOL give log) REAL

PROC r phyper = (REAL x, nr, nb, n, BOOL lower tail, give log) REAL
PROC r ghyper = (REAL p, nr, nb, n, BOOL lower tail, log p) REAL
PROC r rhyper = (REAL nr, nb, n) REAL

Hyper-geometric distribution.

PROC r ptukey =

(REAL x, groups, df, treatments, BOOL lower tail, give log) REAL
PROC r gtukey =

(REAL p, groups, df, treatments, BOOL lower tail, log p) REAL
Studentized range distribution.

PROC r dwilcox = (REAL x, m, n, BOOL give log) REAL

PROC r pwilcox = (REAL x, m, n, BOOL lower tail, give log) REAL

235

LEARNING ALGOL 68 GENIE

22.

PROC r gwilcox
PROC r rwilcox
Wilcoxon distribution.

(REAL p, m, n, BOOL lower tail, log p) REAL
(REAL m, n) REAL

PROC r dsignrank = (REAL x, n, BOOL give log) REAL
PROC r psignrank = (REAL x, n, BOOL lower tail, give log) REAL
PROC r gsignrank = (REAL p, n, BOOL lower tail, log p) REAL

PROC r rsignrank = (REAL n) REAL
Wilcoxon signed rank distribution.

10.8 Functions from the GNU Scientific Library

Next routines require the GNU Scientific Library (GSL). Section 9.3.1 explains how to build
a68g with this library. For more detailed information on those routines please refer to GSL
documentation. Below routines have an equivalent in SLATEC. GSL aims to be a modern
version of SLATEC.

236

PROC airy ai = (REAL x) REAL
Compute the Airy function.

PROC airy ai scaled = (REAL x) REAL
Compute Airy function for a negative argument and an exponentially scaled Airy
function for a non-negative argument.

PROC airy bi = (REAL x) REAL
Compute the Bairy function.

PROC airy bi scaled = (REAL x) REAL
Compute the Bairy function for a negative argument and an exponentially scaled
Bairy function for a non-negative argument.

PROC bessel in0 = (REAL x) REAL
Compute the hyperbolic Bessel function of the first kind of order 0.

PROC bessel in0O scaled = (REAL x) REAL
Compute the exponentially scaled modified hyperbolic Bessel function of the first
kind of order 0.

PROC bessel inl = (REAL x) REAL
Compute the hyperbolic Bessel function of the first kind of order 1.

PROC bessel inl scaled = (REAL x) REAL

Compute the exponentially scaled modified hyperbolic Bessel function of the first
kind of order 1.

PROGRAMMING WITH ALGOL 68 GENIE

9. PROC bessel jn0 = (REAL x) REAL
Compute the Bessel function of the first kind of order 0.

10. PROC bessel jnl = (REAL x) REAL
Compute the Bessel function of the fir