ERLANG

STDLIB

Copyright © 1997-2023 Ericsson AB. All Rights Reserved.
STDLIB 5.0
May 15, 2023

Copyright © 1997-2023 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

May 15, 2023

1.1 Introduction

1 STDLIB User's Guide

1.1 Introduction

1.1.1 Scope

The Standard Erlang Libraries application, STDLIB, is mandatory in the sense that the minimal system based on
Erlang/OTP consists of STDLIB and Kernel.

STDLIB contains the following functional aress:

e Erlang shell

e Command interface

e Query interface

* Interfaceto standard Erlang /O servers

« Interfaceto the Erlang built-in term storage BIFs

* Regular expression matching functions for strings and binaries
e Finite state machine

e Event handling

* Functionsfor the server of aclient-server relation

e Function to control applicationsin a distributed manner

e Start and control of slave nodes

e Operations on finite sets and relations represented as sets
e Library for handling binary data

» Disk-based term storage

e List processing

* Mapsprocessing

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.2 The Erlang I/O Protocol

The 1/O protocol in Erlang enables bi-directional communication between clients and servers.

e Thel/O serverisaprocessthat handlesthe requests and performsthe requested task on, for example, an 1/O device.
* Theclientisany Erlang process wishing to read or write data from/to the 1/O device.

The common 1/0 protocol has been present in OTP since the beginning, but has been undocumented and has also
evolved over the years. In an addendum to Robert Virding's rationale, the original 1/O protocol is described. This
section describes the current 1/O protocol.

Theoriginal 1/0 protocol was simple and flexible. Demandsfor memory efficiency and execution time efficiency have
triggered extensions to the protocol over the years, making the protocol larger and somewhat less easy to implement
than the original. It can certainly be argued that the current protocol is too complex, but this section describes how
it looks today, not how it should have looked.

Ericsson AB. All Rights Reserved.: STDLIB | 1

1.2 The Erlang 1/O Protocol

The basic ideas from the origina protocol still hold. The 1/0 server and client communicate with one single, rather
simplistic protocol and no server stateis ever present in the client. Any 1/O server can be used together with any client
code, and the client code does not need to be aware of the I/O device that the 1/O server communicates with.

1.2.1 Protocol Basics

As described in Robert's paper, 1/0 servers and clients communicate using i o_r equest /i o_repl y tuples as
follows:

{io request, From, ReplyAs, Request}
{io reply, ReplyAs, Reply}

Theclient sendsani o_r equest tupleto the I/O server and the server eventually sendsacorrespondingi o_r epl y
tuple.

 Fromisthepi d() of the client, the process which the I/O server sends the I/O reply to.

* Repl yAs can be any datum and is returned in the corresponding i o_r epl y. Thei o module monitors the the
I/0 server and uses the monitor reference as the Repl yAs datum. A more complicated client can have many
outstanding 1/0 regqueststo the same /O server and can use different references (or something el se) to differentiate
among the incoming 1/0 replies. Element Repl yAs isto be considered opaque by the 1/O server.

Noticethat the pi d() of the I/O server is not explicitly presentin tuplei o_r epl y. Thereply can be sent from
any process, not necessarily the actual 1/0 server.
 Request and Repl y are described below.

When an 1/O server receives an i 0_r equest tuple, it acts upon the Request part and eventually sends an
i o_reply tuplewith the corresponding Repl y part.

1.2.2 Output Requests

To output characters on an 1/0 device, the following Request sexist:

{put_chars, Encoding, Characters}
{put_chars, Encoding, Module, Function, Args}

 Encodi ngisuni code orl ati nl, meaning that the characters are (in case of binaries) encoded as UTF-8 or
ISO Latin-1 (pure bytes). A well-behaved /O server is also to return an error indication if list elements contain
integers > 255 when Encodi ngissettol ati nl.

Notice that this does not in any way tell how characters are to be put on the 1/O device or handled by the I/O
server. Different 1/O servers can handle the characters however they want, this only tells the I/O server which
format the data is expected to have. In the Modul e/Funct i on/Ar gs case, Encodi ng tells which format the
designated function produces.

Notice also that byte-oriented datais simplest sent using the 1SO Latin-1 encoding.

e Charact ers are the data to be put on the I/O device. If Encodi ng isl ati nl, thisisaniolist().If
Encodi ng is uni code, this is an Erlang standard mixed Unicode list (one integer in a list per character,
charactersin binaries represented as UTF-8).

e Modul e,Functi on,and Ar gs denoteafunctionthat iscalled to producethedata(likei o_I i b: f or mat / 2).

Ar gs isalist of arguments to the function. The function is to produce data in the specified Encodi ng. The I/
O server isto call thefunction asappl y(Mod, Func, Args) and put the returned data on the I/O device as
ifitwassentina{put _chars, Encodi ng, Characters} request. If the function returns anything else
than abinary or list, or throws an exception, an error isto be sent back to the client.

The /O server repliesto the client withani o_r epl y tuple, where element Repl y isone of:

2 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

ok

{error, Error}

Er r or describesthe error to the client, which can do whatever it wants with it. Thei o module typically
returnsit "asis".

1.2.3 Input Requests

To read characters from an I/O device, the following Request sexist:

{get until, Encoding, Prompt, Module, Function, ExtraArgs}

Encodi ng denotes how data is to be sent back to the client and what data is sent to the function denoted by
Modul e/Funct i on/Ext r aAr gs. If the function supplied returns data as a list, the data is converted to this
encoding. If the function supplied returns data in some other format, no conversion can be done, and it is up to
the client-supplied function to return datain a proper way.

If Encodi ngisl ati nl, listsof integers0. . 255 or binaries containing plain bytes are sent back to the client
when possible. If Encodi ng isuni code, listswith integers in the whole Unicode range or binaries encoded in
UTF-8 are sent to the client. The user-supplied function always sees lists of integers, never binaries, but the list
can contain numbers > 255 if Encodi ng isuni code.

Pr onpt isalist of characters (not mixed, no binaries) or an atom to be output as a prompt for input on the 1/0
device. Pr onpt isoftenignored by the /O server; if setto' ', it isawaysto beignored (and results in nothing
being written to the 1/0 device).

Modul e, Funct i on, and Ext r aAr gs denote a function and arguments to determine when enough data is
written. The function is to take two more arguments, the last state, and a list of characters. The function is to
return one of:

{done, Result, RestChars}
{more, Continuation}

Resul t canbeany Erlangterm, butifitisal i st () ,thel/O server canconvertittoabi nar y() of appropriate
format before returning it to the client, if the 1/0 server is set in binary mode (see below).

The function is called with the data the 1/0 server finds on its I/O device, returning one of:

e {done, Result, RestChars} whenenoughdataisread. InthiscaseResul t issent tothe client and
Rest Char s iskept in the 1/O server as a buffer for later input.

« {nore, Continuation},whichindicatesthat more characters are needed to complete the request.

Cont i nuati on issent as the state in later calls to the function when more characters are available. When no
more characters are available, the function must return { done, eof, Rest}. Theinitia state is the empty
list. The data when an end of fileisreached on the O device is the atom eof .

An emulation of theget _| i ne request can be (inefficiently) implemented using the following functions:

Ericsson AB. All Rights Reserved.: STDLIB | 3

1.2 The Erlang 1/O Protocol

-module(demo) .
-export([until newline/3, get line/1]).

until newline(ThisFar,eof, MyStopCharacter) ->
{done,eof,[]1};
until newline(ThisFar,CharList,MyStopCharacter) ->
case
lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharlList)
of
{L,[1} ->
{more,ThisFar++L};
{L2, [MyStopCharacter|Rest]} ->
{done,ThisFar++L2++[MyStopCharacter],Rest}
end.

get line(IoServer) ->
IoServer ! {io request,

self(),
IoServer,
{get until, unicode, '', ?MODULE, until newline, [$\n]}},
receive
{io_reply, IoServer, Data} ->
Data
end.

Noticethat the last element inthe Request tuple ([$\ n]) isappended to the argument list when the function is
called. Thefunctionistobecalledlikeappl y(Modul e, Function, [State, Data | ExtraArgs])
by the 1/O server.

A fixed number of charactersis requested using the following Request :

{get chars, Encoding, Prompt, N}
e« Encodi ng and Pronpt asforget _until.
¢ Nisthe number of charactersto be read from the 1/O device.
A singleline (asin former example) is requested with the following Request :

{get line, Encoding, Prompt}
e Encodi ng and Pr onpt asforget _until.

Clearly, get _chars and get _| i ne could be implemented with the get _unt i | request (and indeed they were
originally), but demands for efficiency have made these additions necessary.

The /O server repliesto theclient withani o_r epl y tuple, where element Repl y isone of:

Data

eof

{error, Error}
« Dat aisthecharactersread, in list or binary form (depending on the 1/0O server mode, see the next section).
» eof isreturned when input end is reached and no more data is available to the client process.

e Error describesthe error to the client, which can do whatever it wants with it. Thei o module typically returns
itasis.

4 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

1.2.4 1/O Server Modes

Demands for efficiency when reading data from an 1/O server has not only lead to the addition of theget | i ne and
get _char s requests, but has also added the concept of 1/0 server options. No options are mandatory to implement,
but al 1/O servers in the Erlang standard libraries honor the bi nar y option, which alows element Dat a of the
i 0_reply tupleto be abinary instead of alist when possible. If the data is sent as a binary, Unicode data is sent
in the standard Erlang Unicode format, that is, UTF-8 (notice that the function of theget _unti | request till gets
list data regardless of the 1/0O server mode).

Notice that the get _unti | request allows for a function with the data specified as always being a list. Also, the
return value data from such a function can be of any type (asisindeed the casewhen ani o: f r ead/ 2, 3 request is
sent toan 1/0 server). The client must be prepared for data received as answersto those requeststo bein variousforms.
However, the |/O server isto convert the results to binaries whenever possible (that is, when the function supplied to
get _until returnsalist). Thisisdonein the examplein section An Annotated and Working Example 1/0 Server.

An |/O server in binary mode affects the data sent to the client, so that it must be able to handle binary data. For
convenience, the modes of an /O server can be set and retrieved using the following I/O requests:

{setopts, Opts}
 Optsisalist of optionsin the format recognized by the pr opl i st s module (and by the 1/0 server).
As an example, the 1/O server for the interactive shell (in gr oup. er |) understands the following options:

{binary, boolean()} (or binary/list)

{echo, boolean()}

{expand_fun, fun()}

{encoding, unicode/latinl} (or unicode/latinl)

Options bi nary and encodi ng are common for al 1/0 serversin OTP, while echo and expand are valid only
for this1/O server. Option uni code notifies how characters are put on the physical 1/0 device, that is, if the terminal
itself is Unicode-aware. It does not affect how characters are sent in the 1/O protocol, where each request contains
encoding information for the provided or returned data.

The 1/O server isto send one of the following as Repl y:

ok
{error, Error}

An error (preferably enot sup) isto be expected if the option is not supported by the I/O server (like if an echo
optionissentinaset opt s request to aplain file).

To retrieve options, the following request is used:

getopts

This request asks for acomplete list of al options supported by the I/O server aswell as their current values.

The 1/O server replies:
OptList
{error, Error}

e OptlList isalist of tuples{ Opti on, Val ue}, whereOpti on awaysisan atom.

Ericsson AB. All Rights Reserved.: STDLIB | 5

1.2 The Erlang 1/O Protocol

1.2.5 Multiple I/O Requests

The Request element caninitself contain many Request s by using the following format:

{requests, Requests}

e Requestsisalistof vaidi o_request tuplesfor the protocol. They must be executed in the order that
they appear in the list. The execution is to continue until one of the requests resultsin an error or thelist is
consumed. The result of the last request is sent back to the client.

Thel/O server can, for alist of requests, send any of the following valid resultsin the reply, depending on the requests
inthelist:

ok

{ok, Data}
{ok, Options}
{error, Error}

1.2.6 Optional I/0O Request

The following I/O request is optional to implement and a client isto be prepared for an error return:;

{get geometry, Geometry}

e Ceonetry istheatomr ows or theatomcol umms.
The /O server isto send one of the following as Repl y:

N
{error, Error}

e Nisthe number of character rows or columns that the 1/O device has, if applicable to the 1/O device handled by
the 1/O server, otherwise{ error, enot sup} isagood answer.

1.2.7 Unimplemented Request Types

If an 1/O server encounters a request that it does not recognize (that is, thei o_r equest tuple has the expected
format, but the Request isunknown), the I/O server isto send avalid reply with the error tuple:

{error, request}

This makes it possible to extend the protocol with optional requests and for the clients to be somewhat backward
compatible.

1.2.8 An Annotated and Working Example I/O Server

An 1/O server is any process capable of handling the I/O protocol. There is no generic 1/0 server behavior, but could
well be. The framework is simple, a process handling incoming requests, usually both 1/0O-requests and other 1/0
device-specific requests (positioning, closing, and so on).

The example I/O server stores charactersin an ETS table, making up afairly crude RAM file.
The module begins with the usua directives, afunction to start the 1/0 server and a main loop handling the requests:

6 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

-module(ets io server).
-export([start link/0, init/0, loop/1l, until newline/3, until enough/3]).
-define(CHARS PER REC, 10).

-record(state, {
table,
position, % absolute
mode % binary | list

3.

start link() ->
spawn_link(?MODULE,init,[]).

init() ->
Table = ets:new(noname, [ordered set]),
?MODULE: loop (#state{table = Table, position = 0, mode=list}).

loop(State) ->
receive
{io_request, From, ReplyAs, Request} ->
case request(Request,State) of
{Tag, Reply, NewState} when Tag =:= ok; Tag =:= error ->
reply(From, ReplyAs, Reply),
?MODULE: loop (NewState);
{stop, Reply, NewState} ->
reply(From, ReplyAs, Reply),
exit(Reply)
end;
%% Private message
{From, rewind} ->
From ! {self(), ok},
?MODULE: loop (State#state{position = 0});
_Unknown ->
?MODULE: loop(State)
end.

The main loop receives messages from the client (which can usethethei 0 moduleto send requests). For each request,
thefunctionr equest / 2 iscalled and areply is eventually sent using functionr epl y/ 3.

The "private" message { From rewi nd} results in the current position in the pseudo-file to be reset to 0 (the
beginning of the "file"). Thisis atypical example of 1/O device-specific messages not being part of the 1/O protocal.
It isusually abad ideato embed such private messagesini o_r equest tuples, asthat can confuse the reader.

First, we examine the reply function:

reply(From, ReplyAs, Reply) ->
From ! {io reply, ReplyAs, Reply}.

It sendsthei o_r epl y tuple back to the client, providing element Repl yAs received in the request along with the
result of the request, as described earlier.

We need to handle some requests. First the requests for writing characters:

Ericsson AB. All Rights Reserved.: STDLIB | 7

1.2 The Erlang 1/O Protocol

request({put_chars, Encoding, Chars}, State) ->
put_chars(unicode:characters to list(Chars,Encoding),State);
request({put _chars, Encoding, Module, Function, Args}, State) ->
try
request({put_chars, Encoding, apply(Module, Function, Args)}, State)
catch
7->
{error, {error,Function}, State}
end;

The Encodi ng says how the characters in the request are represented. We want to store the characters as lists in
the ETS table, so we convert them to lists using function uni code: characters_to | i st/ 2. The conversion
function conveniently accepts the encoding typesuni code and| at i n1, so we can use Encodi ng directly.

When Modul e, Functi on, and Ar gunent s are provided, we apply it and do the same with the result as if the
data was provided directly.

We handle the requests for retrieving data:

request({get until, Encoding, Prompt, M, F, As}, State) ->
get until(Encoding, M, F, As, State);
request({get chars, Encoding, Prompt, N}, State) ->
%% To simplify the code, get chars is implemented using get until
get until(Encoding, ?MODULE, until enough, [N], State);
request({get line, Encoding, Prompt}, State) ->
%% To simplify the code, get line is implemented using get until
get until(Encoding, ?MODULE, until newline, [$\n], State);

Herewe have cheated alittle by more or lessonly implementingget _unt i | and using internal hel persto implement
get _chars and get | i ne. In production code, this can be inefficient, but that depends on the frequency of the
different requests. Before we start implementing functionsput _char s/ 2 andget _unti | / 5, weexaminethefew
remaining requests:

request({get geometry, }, State) ->
{error, {error,enotsup}, State};
request({setopts, Opts}, State) ->
setopts(Opts, State);
request(getopts, State) ->
getopts(State);
request({requests, Reqs}, State) ->
multi request(Reqs, {ok, ok, State});

Request get _geonet r y hasno meaning for this1/O server, sothereplyis{ error, enot sup}.Theonly option
we handleisbi nar y/l i st , which isdonein separate functions.

The multi-request tag (r equest s) is handled in a separate loop function applying the requests in the list one after
another, returning the last result.

{error, request} must bereturned if the request is not recognized:

request(Other, State) ->
{error, {error, request}, State}.

Next we handle the different requests, first the fairly generic multi-request type:

multi request([R|Rs], {ok, Res, State}) ->
multi request(Rs, request(R, State));

multi request([| 1, Error) ->
Error;

multi request([], Result) ->
Result.

8 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

We loop through the requests one at the time, stopping when we either encounter an error or the list is exhausted.
The last return value is sent back to the client (it is first returned to the main loop and then sent back by function

i o_reply).
Requestsget opt s and set opt s are also ssimple to handle. We only change or read the state record:

setopts(0Opts0O,State) ->
Opts = proplists:unfold(
proplists:substitute negations(
[{list,binary}],
Opts0)),
case check valid opts(Opts) of
true ->
case proplists:get value(binary, Opts) of
true ->
{ok,ok,State#state{mode=binary}};
false ->
{ok,ok,State#state{mode=binary}};
->
{ok,ok,State}

end;
false ->
{error,{error,enotsup},State}
end.
check valid opts([]) ->
true;

check valid opts([{binary,Bool}|T]) when is boolean(Bool) ->
check valid opts(T);

check valid opts() ->
false.

getopts(#state{mode=M} = S) ->
{ok, [{binary, case M of
binary ->
true;
7->
false
end}],S}.

As a convention, al 1/O servers handle both {setopts, [binary]}, {setopts, [list]}, and
{setopts,[{binary, boolean()}]}, hencethetrick with proplists:substitute negations/2
and propl i sts:unfol d/1.Ifinvalidoptionsare sentto us, wesend{ error, enot sup} back totheclient.

Request get opt s istoreturnalist of { Opt i on, Val ue} tuples. This hasthe twofold function of providing both
the current values and the available options of this I/O server. We have only one option, and hence return that.

So far this I/O server is fairly generic (except for request r ewi nd handled in the main loop and the creation of an
ETStable). Most I/O servers contain code similar to this one.

To make the example runnable, we start implementing the reading and writing of the datato/from the ETS table. First
function put _char s/ 3:

put chars(Chars, #state{table = T, position = P} = State) ->
R = P div ?CHARS PER REC,
C = P rem ?CHARS PER REC,
[apply update(T,U) || U <- split data(Chars, R, C) 1,
{ok, ok, State#state{position = (P + length(Chars))}}.

We aready have the data as (Unicode) lists and therefore only split the list in runs of a predefined size and put
each run in the table at the current position (and forward). Functionsspl i t _dat a/ 3 and appl y_updat e/ 2 are
implemented below.

Ericsson AB. All Rights Reserved.: STDLIB | 9

1.2 The Erlang 1/O Protocol

Now we want to read data from the table. Function get _unt i | / 5 reads data and applies the function until it says
that it is done. The result is sent back to the client:

get until(Encoding, Mod, Func, As,
#state{position = P, mode = M, table = T} = State) ->

case get loop(Mod,Func,As,T,P,[]) of
{done,Data, ,NewP} when is binary(Data); is list(Data) ->
if
M =:= bipary ->
{ok,

unicode:characters to binary(Data, unicode, Encoding),
State#state{position = NewP}};
true ->
case check(Encoding,
unicode:characters to list(Data, unicode))
of
{error, _} =E ->
{error, E, State};
List ->
{ok, List,
State#state{position = NewP}}
end
end;
{done,Data, ,NewP} ->
{ok, Data, State#state{position = NewP}};
Error ->
{error, Error, State}
end.

getfloop(Mr FIAITI P:C) ->
{NewP,L} = get(P,T),
case catch apply(M,F,[C,L|A]) of
{done, List, Rest} ->
{done, List, [], NewP - length(Rest)};
{more, NewC} ->
get loop(M,F,A,T,NewP,NewC);
->
{error,F}
end.

Herewea so handlethemode (bi nary orl i st)that canbeset by request set opt s. By default, all OTP1/O servers
send data back to the client as lists, but switching mode to bi nar y can increase efficiency if the I/O server handles
it in an appropriate way. The implementation of get _unt i | isdifficult to get efficient, as the supplied function is
defined to take lists as arguments, but get _char s and get _| i ne can be optimized for binary mode. However,
this example does not optimize anything.

It isimportant though that the returned datais of the correct type depending on the options set. We therefore convert
the lists to binaries in the correct encoding if possible before returning. The function supplied in the get _unt i |

reguest tuple can, asitsfinal result return anything, so only functions returning lists can get them converted to binaries.
If the request contains encoding tag uni code, thelists can contain al Unicode code points and the binaries are to be
in UTF-8. If theencodingtagisl at i n1,theclientisonly to get charactersintherangeO. . 255. Functioncheck/ 2
takes care of not returning arbitrary Unicode code points in lists if the encoding was specified as| ati nl. If the
function does not return alist, the check cannot be performed and the result isthat of the supplied function untouched.

To manipulate the table we implement the following utility functions:

10 | Ericsson AB. All Rights Reserved.: STDLIB

1.2 The Erlang I/O Protocol

check(unicode, List) ->
List;

check(latinl, List) ->
try

[throw(not unicode) || X <- List,

X > 255 1],

List
catch

throw: _ ->

{error,{cannot _convert, unicode, latinl}}

end.

The function check provides an error tuple if Unicode code points > 255 are to be returned if the client requested
latinl.

The two functions until _newl ine/3 and until _enough/ 3 are helpers used together with function
get _until/5toimplement get _chars andget _I i ne (inefficiently):

until newline([],eof, MyStopCharacter) ->
{done,eof, [1};
until newline(ThisFar,eof, MyStopCharacter) ->
{done,ThisFar, [1};
until newline(ThisFar,CharList,MyStopCharacter) ->
case
lists:splitwith(fun(X) -> X =/= MyStopCharacter end, CharList)
of

{L,[1} ->
{more,ThisFar++L};
{L2, [MyStopCharacter|Rest]} ->
{done, ThisFar++L2++[MyStopCharacter],Rest}
end.

until enough([],eof, N) ->
{done,eof,[1};

until enough(ThisFar,eof, N) ->
{done,ThisFar,[1};

until enough(ThisFar,CharList,N)

when length(ThisFar) + length(CharList) >= N ->

{Res,Rest} = my split(N,ThisFar ++ CharList, []),
{done,Res,Rest};

until enough(ThisFar,CharList, N) ->
{more,ThisFar++CharList}.

As can be seen, the functions above are just the type of functions that areto be providedinget _unt i | requests.
To complete the I/0O server, we only need to read and write the table in an appropriate way:

Ericsson AB. All Rights Reserved.: STDLIB | 11

1.3 Using Unicode in Erlang

get(P,Tab) ->
R = P div ?CHARS PER REC,
C = P rem ?CHARS PER REC,
case ets:lookup(Tab,R) of
[1->
{P,eof};
[{R,List}] ->
case my split(C,List,[]) of
{11} ->
{P+length(List),eof};
{ ,Data} ->
{P+length(Data),Data}
end
end.

my split(0,Left,Acc) ->
{lists:reverse(Acc),Left};
my split(,[],Acc) ->
{lists:reverse(Acc),[1};
my split(N,[H|T],Acc) ->
my split(N-1,T,[H|Acc]).

split data([], ,) ->
[1;

split data(Chars, Row, Col) ->
{This,Left} = my split(?CHARS PER REC - Col, Chars, []),
[{Row, Col, This} | split data(Left, Row + 1, 0) 1.

apply update(Table, {Row, Col, List}) ->
case ets:lookup(Table,Row) of
[1->
ets:insert(Table, {Row, lists:duplicate(Col,0) ++ List});
[{Row, OldData}] ->
{Partl, } = my split(Col,OldData,[]),
{ ,Part2} = my split(Col+length(List),0ldData,[]),
ets:insert(Table,{Row, Partl ++ List ++ Part2})
end.

The table is read or written in chunks of ?CHARS PER REC, overwriting when necessary. The implementation is
clearly not efficient, it isjust working.

This concludes the example. It isfully runnable and you can read or write to the 1/O server by using, for example, the
i 0 module or eventhef i | e module. Itisassimple asthat to implement afully fledged I/O server in Erlang.

1.3 Using Unicode in Erlang

1.3.1 Unicode Implementation

Implementing support for Unicode character setsis an ongoing process. The Erlang Enhancement Proposal (EEP) 10
outlined the basics of Unicode support and specified a default encoding in binaries that all Unicode-aware modules
areto handlein the future.

Hereis an overview what has been done so far:

* Thefunctionality described in EEP10 was implemented in Erlang/OTP R13A.

e Erlang/OTP R14B01 added support for Unicode filenames, but it was not complete and was by default disabled
on platforms where no guarantee was given for the filename encoding.

* With Erlang/OTP R16A came support for UTF-8 encoded source code, with enhancements to many of
the applications to support both Unicode encoded filenames and support for UTF-8 encoded files in many

12 | Ericsson AB. All Rights Reserved.: STDLIB

1.3 Using Unicode in Erlang

circumstances. Most notableisthe support for UTF-8infilesread by f i | e: consul t / 1, release handler support
for UTF-8, and more support for Unicode character setsin the I/O system.

e InErlang/OTP 17.0, the encoding default for Erlang source files was switched to UTF-8.

e InErlang/OTP 20.0, atoms and function can contain Unicode characters. Module names, application names, and
node names are still restricted to the ISO Latin-1 range.

Support was added for normalizations formsin uni code and the st r i ng module now handles utf8-encoded
binaries.

This section outlines the current Unicode support and gives some recipes for working with Unicode data.

1.3.2 Understanding Unicode

Experience with the Unicode support in Erlang has made it clear that understanding Unicode characters and encodings
isnot as easy as one would expect. The complexity of the field and the implications of the standard require thorough
understanding of concepts rarely before thought of.

Also, the Erlang implementation requires understanding of concepts that were never an issue for many (Erlang)
programmers. To understand and use Unicode characters requires that you study the subject thoroughly, even if you
are an experienced programmer.

Asan example, contemplate the issue of converting between upper and lower case |etters. Reading the standard makes
you realize that thereis not a simple one to one mapping in all scripts, for example:

* InGerman, theletter "[3' (sharp s) isin lower case, but the uppercase equivaent is"SS".

* InGreek, theletter "#"' has two different lowercase forms, "#" in word-final position and "#" elsewhere.
e InTurkish, both dotted and dotless "i" exist in lower case and upper case forms.

e Cyrillic"I" has usualy no lowercase form.

» Languages with no concept of upper case (or lower case).

So, a conversion function must know not only one character at atime, but possibly the whole sentence, the natural
language to trandate to, the differences in input and output string length, and so on. Erlang/OTP has currently no
Unicode upper case/l ower case functionality with language specific handling, but publicly available libraries
address these issues.

Another example is the accented characters, where the same glyph has two different representations. The Swedish
letter "6" is one example. The Unicode standard has a code point for it, but you can also write it as 0" followed by
"U+0308" (Combining Diaeresis, with the simplified meaning that the last letter isto have "™ above). They have the
same glyph, user perceived character. They are for most purposes the same, but have different representations. For
example, MacOS X converts al filenamesto use Combining Diaeresis, while most other programs (including Erlang)
try to hide that by doing the opposite when, for example, listing directories. However it isdone, it is usually important
to normalize such charactersto avoid confusion.

The list of examples can be made long. One need a kind of knowledge that was not needed when programs only
considered one or two languages. The complexity of human languages and scripts has certainly made this a challenge
when constructing a universal standard. Supporting Unicode properly in your program will require effort.

1.3.3 What Unicode Is

Unicode is astandard defining code points (numbers) for al known, living or dead, scripts. In principle, every symbol
used in any language has a Unicode code point. Unicode code points are defined and published by the Unicode
Consortium, which is a non-profit organization.

Support for Unicode isincreasing throughout the world of computing, asthe benefits of one common character set are
overwhelming when programs are used in aglobal environment. Along with the base of the standard, the code points
for all the scripts, some encoding standar ds are available.

Ericsson AB. All Rights Reserved.: STDLIB | 13

1.3 Using Unicode in Erlang

Itisvital to understand the difference between encodings and Unicode characters. Unicode characters are code points
according to the Unicode standard, while the encodings are ways to represent such code points. An encoding isonly a
standard for representation. UTF-8 can, for example, be used to represent avery limited part of the Unicode character
set (for example | SO-Latin-1) or the full Unicode range. It is only an encoding format.

As long as all character sets were limited to 256 characters, each character could be stored in one single byte, so
there was more or less only one practical encoding for the characters. Encoding each character in one byte was so
common that the encoding was not even named. With the Unicode system there are much more than 256 characters, so
acommon way is needed to represent these. The common ways of representing the code points are the encodings. This
means awhole new concept to the programmer, the concept of character representation, which was anon-issue earlier.

Different operating systems and tools support different encodings. For example, Linux and MacOS X have chosen
the UTF-8 encoding, which is backward compatible with 7-bit ASCII and therefore affects programs written in plain
English the least. Windows supports alimited version of UTF-16, namely all the code planes where the characters can
be stored in one single 16-bit entity, which includes most living languages.

The following are the most widely spread encodings:
Bytewise representation

Thisisnot aproper Unicoderepresentation, but the representation used for charactersbefore the Unicode standard.
It can still be used to represent character code pointsin the Unicode standard with numbers < 256, which exactly
corresponds to the ISO Latin-1 character set. In Erlang, thisis commonly denoted | at i n1 encoding, which is
dlightly misleading as SO Latin-1 is a character code range, not an encoding.

UTF-8

Each character is stored in one to four bytes depending on code point. The encoding is backward compatible
with bytewise representation of 7-bit ASCII, as all 7-bit characters are stored in one single byte in UTF-8. The
characters beyond code point 127 are stored in more bytes, letting the most significant bit in the first character
indicate a multi-byte character. For details on the encoding, the RFC is publicly available.

Notice that UTF-8 is not compatible with bytewise representation for code points from 128 through 255, so an
SO Latin-1 bytewise re